The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface...The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.展开更多
Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Here...Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.展开更多
Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission elec...Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission electron microscopy,infrared,powder X-ray diffraction,electron dispersive spectroscopy,Raman and X-ray photoelectron spectroscopy(XPS).This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions.The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%.No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS,which showed good catalyst stability.A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.展开更多
文摘The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.
文摘Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.
基金supported by the National Natural Science Foundation of China(21173105,21172098)~~
文摘Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission electron microscopy,infrared,powder X-ray diffraction,electron dispersive spectroscopy,Raman and X-ray photoelectron spectroscopy(XPS).This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions.The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%.No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS,which showed good catalyst stability.A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.