The effect of sodium butyl xanthate (NaBX) and dodecylamine (DDA) as combined collector on the sulphidizing flotation of copper oxide was investigated by flotation test, fluorescent pyrene probe, zeta potential, and i...The effect of sodium butyl xanthate (NaBX) and dodecylamine (DDA) as combined collector on the sulphidizing flotation of copper oxide was investigated by flotation test, fluorescent pyrene probe, zeta potential, and infrared spectroscopy analyses. The micro-flotation results show that combined use of NaBX+DDA yields better effect than using NaBX at pH 7-11 only, and the optimal molar ratio of NaBX to DDA is 2: 1. The actual ores flotation shows that when the dosage of NaBX+DDA is (100+54) g/t, the copper concentrate grade and recovery are 15.93% and 76.73%, respectively. The fluorescent pyrene probe test demonstrates that the NaBX+DDA can reduce the micelle concentration in the pulp. The zeta potential and the infrared spectroscopy analyses indicate that chemical adsorption, hydrogen-bonding and electrostatic interaction can help to adsorb NaBX+DDA on the surface of malachite. Meantime, copper xanthate and copper-amine complexes may be generated during the adsorption process.展开更多
基金Projects(51504053,51374079)supported by the National Natural Science Foundation of China
文摘The effect of sodium butyl xanthate (NaBX) and dodecylamine (DDA) as combined collector on the sulphidizing flotation of copper oxide was investigated by flotation test, fluorescent pyrene probe, zeta potential, and infrared spectroscopy analyses. The micro-flotation results show that combined use of NaBX+DDA yields better effect than using NaBX at pH 7-11 only, and the optimal molar ratio of NaBX to DDA is 2: 1. The actual ores flotation shows that when the dosage of NaBX+DDA is (100+54) g/t, the copper concentrate grade and recovery are 15.93% and 76.73%, respectively. The fluorescent pyrene probe test demonstrates that the NaBX+DDA can reduce the micelle concentration in the pulp. The zeta potential and the infrared spectroscopy analyses indicate that chemical adsorption, hydrogen-bonding and electrostatic interaction can help to adsorb NaBX+DDA on the surface of malachite. Meantime, copper xanthate and copper-amine complexes may be generated during the adsorption process.