Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature...Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature. La‐doped Pt/TiO2 had a dramatically promoted catalytic performance for HCHO oxidation. The reasons for the La promotion effect were investigated by N2 adsorption, X‐raydiffraction, CO chemisorption, X‐ray photoelectron spectroscopy, transmission electron microscopy(TEM) and high‐angle annular dark field scanning TEM. The Pt nanoparticle size was reduced to 1.7nm from 2.2 nm after modification by La, which led to higher Pt dispersion, more exposed activesites and enhanced metal‐support interaction. Thus a superior activity for indoor low concentrationHCHO oxidation was obtained. Moreover, the La‐doped TiO2 can be wash‐coated on a cordieritemonolith so that very low amounts of Pt (0.01 wt%) can be used. The catalyst was evaluated in asimulated indoor HCHO elimination environment and displayed high purifying efficiency and stability.It can be potentially used as a commercial catalyst for indoor HCHO elimination.展开更多
Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the clust...Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the cluster model.Eight Sr‐doped La2O3cluster models were built from pure La2O3clusters that were used previously to model the La2O3catalyst.These form two distinct categories,namely,those without a radical character(LaSrO2(OH),La2SrO4,La3SrO5(OH),and La5SrO8(OH))and those with a radical character(LaSrO3,La2SrO4(OH),La3SrO6,and La5SrO9).The potential‐energy surface for CH4activation to form a CH3radical at different Sr-O and La-O pair sites on these Sr‐doped La2O3clusters was calculated to study the Sr‐doping effect on the OCM catalytic activity.CH4physisorption and chemisorption energies,and activation barriers,and CH3desorption energies were predicted.Compared with the pure La2O3clusters,in general,the Sr‐doped La2O3clusters are thermodynamically and kinetically more reactive with CH4.For the Sr‐doped La2O3clusters without the radical character,the Sr-O pair site is more reactive with CH4than the La-O pair site,although a direct release of the CH3radical is also highly endothermic as in the case of the pure La2O3clusters.In contrast,for the Sr‐doped La2O3clusters with a radical character,the activation of CH4at the oxygen radical site and the release of the CH3radical are much easier.Thus,our calculations suggest that the Sr dopant prompts the OCM catalytic activity of the La2O3catalyst by providing a highly active oxygen‐radical site and by strengthening the basicity of the M-O pair site,which leads to lower CH4activation energies and lower CH3desorption energies.展开更多
基金supported by the National Key Research and Development Program (2016YFC0205900)the National Natural Science Foundation of China (21503106, 21567016)+1 种基金the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006)~~
文摘Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature. La‐doped Pt/TiO2 had a dramatically promoted catalytic performance for HCHO oxidation. The reasons for the La promotion effect were investigated by N2 adsorption, X‐raydiffraction, CO chemisorption, X‐ray photoelectron spectroscopy, transmission electron microscopy(TEM) and high‐angle annular dark field scanning TEM. The Pt nanoparticle size was reduced to 1.7nm from 2.2 nm after modification by La, which led to higher Pt dispersion, more exposed activesites and enhanced metal‐support interaction. Thus a superior activity for indoor low concentrationHCHO oxidation was obtained. Moreover, the La‐doped TiO2 can be wash‐coated on a cordieritemonolith so that very low amounts of Pt (0.01 wt%) can be used. The catalyst was evaluated in asimulated indoor HCHO elimination environment and displayed high purifying efficiency and stability.It can be potentially used as a commercial catalyst for indoor HCHO elimination.
基金supported by the National Natural Science Foundation of China(21473233,21403277)the Frontier Science Program of Shell Global Solutions International B.V.(PT32281)+1 种基金the Ministry of Science and Technology of China(2016YFA0202802)the Shanghai Municipal Science and Technology Commission(14ZR1444600)~~
文摘Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the cluster model.Eight Sr‐doped La2O3cluster models were built from pure La2O3clusters that were used previously to model the La2O3catalyst.These form two distinct categories,namely,those without a radical character(LaSrO2(OH),La2SrO4,La3SrO5(OH),and La5SrO8(OH))and those with a radical character(LaSrO3,La2SrO4(OH),La3SrO6,and La5SrO9).The potential‐energy surface for CH4activation to form a CH3radical at different Sr-O and La-O pair sites on these Sr‐doped La2O3clusters was calculated to study the Sr‐doping effect on the OCM catalytic activity.CH4physisorption and chemisorption energies,and activation barriers,and CH3desorption energies were predicted.Compared with the pure La2O3clusters,in general,the Sr‐doped La2O3clusters are thermodynamically and kinetically more reactive with CH4.For the Sr‐doped La2O3clusters without the radical character,the Sr-O pair site is more reactive with CH4than the La-O pair site,although a direct release of the CH3radical is also highly endothermic as in the case of the pure La2O3clusters.In contrast,for the Sr‐doped La2O3clusters with a radical character,the activation of CH4at the oxygen radical site and the release of the CH3radical are much easier.Thus,our calculations suggest that the Sr dopant prompts the OCM catalytic activity of the La2O3catalyst by providing a highly active oxygen‐radical site and by strengthening the basicity of the M-O pair site,which leads to lower CH4activation energies and lower CH3desorption energies.