期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
一步法制备阴极氧还原电催化剂FeNC
1
作者 杨代辉 冯勇 +1 位作者 白亚峰 薛峰 《电池》 CAS 北大核心 2021年第2期135-137,共3页
将硫酸与对苯二胺(pPDA)进行简单的中和反应,得到质子酸盐[pPDA][2HSO_(4)],再将[pPDA][2HSO_(4)]与FeSO_(4)·7H_(2)O溶液混合,最后进行高温处理,一步合成得到高活性的氧还原电催化剂FeNC,可避免模板法制备的繁杂过程。在900℃下... 将硫酸与对苯二胺(pPDA)进行简单的中和反应,得到质子酸盐[pPDA][2HSO_(4)],再将[pPDA][2HSO_(4)]与FeSO_(4)·7H_(2)O溶液混合,最后进行高温处理,一步合成得到高活性的氧还原电催化剂FeNC,可避免模板法制备的繁杂过程。在900℃下、氢气体积分数为10%的氢氩混合气中碳化,前驱体FeSO 4·7H_(2)O质量分数为10%的条件下制得的催化剂,半波电位为0.815 V(vs.RHE),起始电位为0.933 V(vs.RHE),与Pt/C相比,半波电位相当,起始电位正13 mV。 展开更多
关键词 氧还原电催化剂 一步合成 FeNC 模板法
下载PDF
基于介孔碳材料的氧还原电催化剂研究
2
作者 潘泽宇 《化工管理》 2017年第29期187-187,共1页
在燃料电池制备上,氧还原电催化剂的制备一直具有一定的难度。基于这种认识,本文以ZIF-8为前驱物,采用高温碳化的方法进行氮磷掺杂介孔碳材料催化剂的制备。从实验结果来看,制备的介孔碳材料为无定形碳,孔径在2-10nm间,极限电流密度较... 在燃料电池制备上,氧还原电催化剂的制备一直具有一定的难度。基于这种认识,本文以ZIF-8为前驱物,采用高温碳化的方法进行氮磷掺杂介孔碳材料催化剂的制备。从实验结果来看,制备的介孔碳材料为无定形碳,孔径在2-10nm间,极限电流密度较商业催化剂要高,且拥有良好的抗甲醇性能和催化稳定性。 展开更多
关键词 介孔碳材料 氧还原电催化剂 还原催化性能
下载PDF
非碳化策略制备氧还原电催化剂 被引量:2
3
作者 米春霞 彭鹏 向中华 《科学通报》 EI CAS CSCD 北大核心 2020年第14期1348-1357,共10页
非贵金属碳基氧还原催化剂是当前热门的燃料电池催化剂,而传统制备过程中,需要经过高温(>700°C)碳化过程来提高材料的导电性和催化活性.高温碳化过程中,材料结构可能发生不可预测性的改变甚至重构、催化活性位不清晰、难以控制... 非贵金属碳基氧还原催化剂是当前热门的燃料电池催化剂,而传统制备过程中,需要经过高温(>700°C)碳化过程来提高材料的导电性和催化活性.高温碳化过程中,材料结构可能发生不可预测性的改变甚至重构、催化活性位不清晰、难以控制等问题,给催化过程中的反应机制、失活机理与宏量制备等带来重大挑战.本文系统地介绍了利用非碳化策略构筑新型氧还原催化材料的制备与应用,尽管非碳化法策略仍处于婴儿发展期,但正在发挥着重要推动作用,为活性位点、催化机理研究带来新的机遇. 展开更多
关键词 非碳化 氧还原电催化剂 催化机理 燃料
原文传递
MOFs衍生的碳基电催化剂的研究进展
4
作者 宋瑞利 范丽丹 +1 位作者 苗现华 成建群 《现代化工》 CAS CSCD 北大核心 2024年第8期44-47,53,共5页
综述了最近几年金属有机骨架(MOFs)衍生的杂原子掺杂多孔碳基复合材料的氧还原反应(ORR)电催化剂的研究现状。MOFs衍生的多孔碳材料具有非常多的优异性能,包括低成本、高比表面积、高导电性和丰富的孔隙率,这些都有利于电子或质子的传输... 综述了最近几年金属有机骨架(MOFs)衍生的杂原子掺杂多孔碳基复合材料的氧还原反应(ORR)电催化剂的研究现状。MOFs衍生的多孔碳材料具有非常多的优异性能,包括低成本、高比表面积、高导电性和丰富的孔隙率,这些都有利于电子或质子的传输,因此,有望取代贵金属ORR电催化剂。 展开更多
关键词 新能源 金属有机骨架 杂原子掺杂 氧还原电催化剂
下载PDF
质子交换膜燃料电池Pt/C氧还原催化剂的研发进展 被引量:2
5
作者 胡卓林 《山西化工》 2022年第3期42-44,共3页
质子交换膜燃料电池是高效、清洁的能源利用转化装置之一,是清洁能源利用的方式之一。目前的PEMFCs广泛使用铂基氧还原电催化剂,但是其大规模应用需要将铂用量显著降低。本文主要总结分析了Pt/C类催化剂的主要制备方法和产业化路径,以... 质子交换膜燃料电池是高效、清洁的能源利用转化装置之一,是清洁能源利用的方式之一。目前的PEMFCs广泛使用铂基氧还原电催化剂,但是其大规模应用需要将铂用量显著降低。本文主要总结分析了Pt/C类催化剂的主要制备方法和产业化路径,以及可满足低铂要求的合金型催化剂的性能调控研究现状。 展开更多
关键词 质子交换膜燃料 氧还原电催化剂 铂碳催化剂 合金型催化剂
下载PDF
复合型反蛋白石结构制备及电催化氧还原研究——一个研究型综合实验设计
6
作者 杜晓航 李敬德 刘桂华 《广州化工》 CAS 2023年第4期279-281,共3页
设计了一个与科研工作紧密相关的综合性实验。通过硬模板法和催化自生长法制备含钴碳纳米管原位嵌入的复合型反蛋白石结构,利用SEM、TEM、XRD、XPS等对催化剂的形貌结构进行表征,并采用线性扫描伏安、塔菲尔曲线等手段对其氧还原电催化... 设计了一个与科研工作紧密相关的综合性实验。通过硬模板法和催化自生长法制备含钴碳纳米管原位嵌入的复合型反蛋白石结构,利用SEM、TEM、XRD、XPS等对催化剂的形貌结构进行表征,并采用线性扫描伏安、塔菲尔曲线等手段对其氧还原电催化活性进行评价。本实验的开展及文献调研,将提高学生对电催化相关新能源材料与设备的认识,发展学生对组分-结构-性能关系的科学思维与认知。 展开更多
关键词 综合实验设计 氧还原电催化剂 模板法 反蛋白石结构 线性扫描伏安
下载PDF
改性壳聚糖金属螯合物的合成及电催化性能 被引量:1
7
作者 聂雪 蒋金芝 +1 位作者 唐有根 孙雅庆 《电源技术》 CAS CSCD 北大核心 2006年第2期144-148,共5页
以壳聚糖和2-吡啶甲醛为原料,合成了具有高螯合性能的2-吡啶甲醛缩壳聚糖(PYCS)。采用正交实验法研究并得到了缩合反应的最佳条件:溶胀温度为65℃,反应物配比(壳聚糖与2-吡啶甲醛的摩尔比)为1∶4,溶液pH值为6.0,反应时间为12h。最高缩... 以壳聚糖和2-吡啶甲醛为原料,合成了具有高螯合性能的2-吡啶甲醛缩壳聚糖(PYCS)。采用正交实验法研究并得到了缩合反应的最佳条件:溶胀温度为65℃,反应物配比(壳聚糖与2-吡啶甲醛的摩尔比)为1∶4,溶液pH值为6.0,反应时间为12h。最高缩合率为97.5%。并研究了2-吡啶甲醛改性壳聚糖(PYCS)对Cu(Ⅱ)、Ni(Ⅱ)、Co(Ⅱ)、Fe(Ⅲ)离子的静态螯合性能,以及介质种类、介质酸度、金属离子浓度和螯合时间对PYCS螯合金属离子能力的影响。对合成产物进行了红外光谱分析。将壳聚糖金属螯合物用作铝-空气电池阴极氧还原反应的催化剂,通过放电曲线的测试,研究了它们的氧还原电催化性能。 展开更多
关键词 2-吡啶甲醛 改性壳聚糖 螯合 氧还原电催化剂
下载PDF
Series Reports from Professor Wei's Group of Chongqing University:Advancements in Electrochemical Energy Conversions(1/4):Report 1:High-performance Oxygen Reduction Catalysts for Fuel Cells
8
作者 Fa-Dong Chen Zhuo-Yang Xie +5 位作者 Meng-Ting Li Si-Guo Chen Wei Ding Li Li Jing Li Zi-Dong Wei 《电化学(中英文)》 CAS 北大核心 2024年第7期1-27,共27页
Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo... Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts. 展开更多
关键词 Fuel cell Oxygen reduction reaction Pt-based catalyst Carbon-based catalyst
下载PDF
Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO_(2) electroreduction to CH_(4)
9
作者 Hao Dai Tao Song +8 位作者 Xian Yue Shuting Wei Fuzhi Li Yanchao Xu Siyan Shu Ziang Cui Cheng Wang Jun Gu Lele Duan 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期123-132,共10页
Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Here... Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis. 展开更多
关键词 Carbon dioxide reduction ELECTROCATALYSIS Cu single-atom catalyst N-containing graphdiyne Methane
下载PDF
Methanol Tolerant Non-noble Metal Co-C-N Catalyst for Oxygen Reduction Reaction Using Urea as Nitrogen Source 被引量:3
10
作者 司玉军 陈昌国 +1 位作者 尹伟 蔡慧 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期331-334,I0002,共5页
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo... A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution. 展开更多
关键词 Direct methanol fuel ceil Oxygen reduction reaction CATALYST Non-noble metal Methanol resistance
下载PDF
Effect of preparation routes on activity of Ag-MnO_x/C as electrocatalysts for oxygen reduction reaction in alkaline media 被引量:2
11
作者 伍秋美 阮建明 +1 位作者 周忠诚 桑商斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期510-519,共10页
The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray... The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion spectroscopy (EDS) as well as scanning electron microscopy (SEM) and electrochemical techniques. The results show that more Ag and Mn species present on the surface of the Ag-MnOx/C composite prepared by two-step route (Ag-MnOx/C-2) compared to the one prepared by one-step route (Ag-MnOx/C-1), which contributes to its superior activity toward the ORR. The higher electron transfer number involved in the ORR can be observed on the Ag-MnOx/C-2 composite and its specific mass kinetic current at -0.6 V (vs Hg/HgO) is 46 mA/μg, which is 23 times that on the Ag/C. The peak power density of zinc-air battery with the Ag-MnOx/C-2 air electrode reaches up to 117 mW/cm^2. 展开更多
关键词 SILVER manganese oxide oxygen reduction reaction zinc-air battery ELECTROCATALYST full cell
下载PDF
《大连交通大学学报》第31卷总目次
12
《大连交通大学学报》 CAS 2010年第6期109-112,共4页
关键词 李宝良 大连交通大学 李志强 Π-正则环 张军 仓库选址 路径选择模型 环板式针摆行星传动 氧还原电催化剂 闭孔泡沫铝 学报 连续出版物 目次
下载PDF
A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework 被引量:6
13
作者 白杨芝 衣宝廉 +4 位作者 李佳 蒋尚峰 张洪杰 邵志刚 宋玉江 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1127-1133,共7页
The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report... The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C. 展开更多
关键词 Fuel cellOxygen reduction reactionNon-precious metal catalystMetal organic frameworkAlkaline condition
下载PDF
Rational design and synthesis of one‐dimensional platinum‐based nanostructures for oxygen‐reduction electrocatalysis 被引量:8
14
作者 Huiting Niu Chenfeng Xia +5 位作者 Lei Huang Shahid Zaman Thandavarayan Maiyalagan Wei Guo Bo You Bao Yu Xia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1459-1472,共14页
Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which ... Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which is widely used as the cathode catalyst to overcome the slow kinetics associated with oxygen reduction reaction(ORR).Pt‐based composites with one‐dimensional(1D)nanoarchitectures demonstrate great advantages towards efficient ORR catalysis.This review focuses on the recent advancements in the design and synthesis of 1D Pt‐based ORR catalysts.After introducing the fundamental ORR mechanism and the advanced 1D architectures,their synthesis strategies(template‐based and template‐free methods)are discoursed.Subsequently,their morphology and structure optimization are highlighted,followed by the superstructure assembly using 1D Pt‐based blocks.Finally,the challenges and perspectives on the synthesis innovation,structure design,physical characterization,and theoretical investigations are proposed for 1D Pt‐based ORR nanocatalysts.We anticipate this study will inspire more research endeavors on efficient ORR nanocatalysts in fuel cell application. 展开更多
关键词 Fuel cells Oxygen reduction reaction ELECTROCATALYST Pt alloy One‐dimensional
下载PDF
Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts 被引量:6
15
作者 Hui Zhao Chen-Chen Weng +3 位作者 Jin-Tao Ren Li Ge Yu-Ping Liu Zhong-Yong Yuan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期259-267,共9页
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate... The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance. 展开更多
关键词 Metal phosphonate Metal phosphate Carbon nanotubes Oxygen reduction reaction ELECTROCATALYSIS
下载PDF
Iron-incorporated nitrogen-doped carbon materials as oxygen reduction electrocatalysts for zinc-air batteries 被引量:6
16
作者 Kai Chen Suqin Ci +5 位作者 Qiuhua Xu Pingwei Cai Meizhen Li Lijuan Xiang Xi Hu Zhenhai Wen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期858-867,共10页
The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly... The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly desirable, although it still remains challenging. Herein, we report a facile and reliable route to convert ZIF-8 modified by Fe-phenanthroline into Fe-incorporated and N-doped carbon dodecahedron nanoarchitecture(Fe-NCDNA), in which carbon nanosheets are formed in situ as the building blocks with uniform Fe-N-C species decoration. Systematic electrochemical studies demonstrate that the as-synthesized Fe-NCDNA electrocatalyst possesses highly attractive catalytic features toward the ORR in terms of activity and durability in both alkaline and neutral media. The Zn-air battery with the optimal Fe-NCDNA catalyst as the cathode performs impressively, delivering a power density of 184 m W cm^–2 and a specific capacity of 801 m Ah g^–1;thus, it exhibits great competitive advantages over those of the Zn-air devices employing a Pt-based cathode electrocatalyst. 展开更多
关键词 Oxygen reduction reaction ELECTROCATALYST Fe-N-C activity sites Alkaline/neutral medium Zn-air battery
下载PDF
An alternate aqueous phase synthesis of the Pt3Co/C catalyst towards efficient oxygen reduction reaction 被引量:2
17
作者 Jinjing Huang Chen Ding +2 位作者 Yongqiang Yang Gang Liu Wen-Bin Cai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1895-1903,共9页
Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is h... Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is highly demanded.Herein we initially report an alternate aqueous phase one-pot synthesis of such catalysts(containing nominally ca.20 wt.%Pt)based on dimethylamine borane(DMAB)reduction.The as-obtained electrocatalyst(denoted as Pt3Co/C-DMAB)is compared with the ones obtained by NaBH4 and N2H4·H2O reduction(denoted as Pt3Co/C-NaBH4 and Pt3Co/C-N2H4·H2O,respectively)as well as a commercial Pt/C,in terms of the structure and electrocatalytic property.It turns out that Pt3Co/C-DMAB exhibits the highest ORR performance among all the tested samples in an O2-saturated 0.1 mol/L HClO4,with the mass activity(specific activity)ca.4(6)times as large as that for Pt/C.After 10000 cycles of the accelerated degradation test,the half-wave potential for ORR on Pt3Co/C-DMAB decreases only by 4 mV,in contrast to 24 mV for that on Pt/C.Pt3Co/C-NaBH4 or Pt3Co/C-N2H4·H2O shows a specific activity comparable to that for Pt3Co/C-DMAB,but a mass activity similar to that for Pt/C.ICP-AES,TEM,XRD and XPS characterizations indicate that Pt3Co nanoparticles are well-dispersed and alloyed with a mean particle size of ca.3.4±0.4 nm,contributing to the prominent electrocatalytic performance of Pt3Co/C-DMAB.This simple aqueous synthetic route may provide an alternate opportunity for developing efficient practical electrocatalysts for ORR. 展开更多
关键词 ORR electrocatalyst Pt–Co alloy Aqueous phase synthesis Dimethylamine borane Structure and property
下载PDF
Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction 被引量:5
18
作者 Jianfei Kong Wenlong Cheng 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期951-969,共19页
The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development ... The quest for low‐cost yet efficient non‐Pt electrocatalysts for the oxygen reduction reaction(ORR)has become one of the main focuses of research in the field of catalysis,which has implications for the development of the next generation of greener fuel cells.Here,we comprehensively describe the'big picture'of recent advances made in the rational design of ORR electrocatalysts,including molecule‐based,metal‐oxide‐based,metal‐nanomaterial‐based and two‐dimensional electrocatalysts.Transition metals can fabricate molecular electrocatalysts with N4‐macrocycles such as porphyrin‐class compounds and the so‐formed M-N-C active centre plays a crucial role in determining the catalytic performances towards the ORR.Group‐IV and‐V Transition metal oxides represent another class of promising alternative of Pt‐based catalysts for the ORR which catalytic activity largely depends on the surface structure and the introduction of surface defects.Recent advances in synthesis of metallic nanoparticles(NPs)allow for precise control over particle sizes and shapes and the crystalline facets exposed to enhance the ORR performance of electrocatalysts.Two‐dimensional materials such as functionalized grapheme or MoS2are emerging as novel electrocatalysts for the ORR.This review covers various aspects towards the design of future ORR electrocatalysts,including the catalytic performance,stability,durability and cost.Some novel electrocatalysts even surpass commercial Pt/C systems,demonstrating their potential to be alternatives in industrial applications.Despite the encouraging progress,challenges,which are also described,remain to be overcome before the real‐world application of novel ORR electrocatalysts. 展开更多
关键词 Oxygen reduction reaction ELECTROCATALYST NANOMATERIAL Molecular electrocatalyt Two‐dimensional material
下载PDF
Preparation of nitrogen-doped carbon nanoblocks with high electrocatalytic activity for oxygen reduction reaction in alkaline solution 被引量:2
19
作者 张亭亭 何传生 +1 位作者 黎琳波 林雨青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1275-1282,共8页
The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and... The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells. 展开更多
关键词 Nitrogen-doped carbon nanoblock Trihydroxymethyl aminomethane ELECTROCATALYST Oxygen reduction reaction NANOCATALYST
下载PDF
Oxygen reduction reaction on Pt‐based electrocatalysts:Four‐electron vs.two‐electron pathway 被引量:2
20
作者 Lili Zhang Suyu Jiang +1 位作者 Wei Ma Zhen Zhou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1433-1443,共11页
Oxygen reduction reaction(ORR)has attracted extensive attention as an important component for sustainable energy storage and conversion technologies.However,the sluggish kinetics has hampered the practical application... Oxygen reduction reaction(ORR)has attracted extensive attention as an important component for sustainable energy storage and conversion technologies.However,the sluggish kinetics has hampered the practical application.Pt‐based nanomaterials have triggered much interest as the most promising electrocatalyst to facilitate the kinetics of ORR.Nonetheless,a major challenge for Pt‐based electrocatalysts is to precisely control the selectivity of reaction pathways and possible products(H2O or H2O2)with a reduced loading amount of precious Pt.This review systematically summarizes the strategies to regulate the ORR performances of Pt‐based electrocatalysts by accommodating the adsorption energy and spatial structure.Further discussion is implemented about the key factors to accelerate the kinetics of ORR and control the 4e‐ORR and 2e‐ORR pathways.Finally,we demonstrate the challenges and perspectives for further development of novel Pt‐based electrocatalysts. 展开更多
关键词 Oxygen reduction reaction ELECTROCATALYSTS PLATINUM SELECTIVITY Hydrogen peroxide
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部