We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor an...We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor and ATT as a support for the TiO2 nanoparticles.The photocatalytic activity of the C-Cl-codoped TiO2/ATT composites with mixed anatase/brookite/rutile phases obtained at pH= 3.0 was much higher than that of commercially available Degussa P25 for the photocatalytic degradation of acid red G under visible-light irradiation.The excellent photocatalytic activity of the developed composite originates from the nonmetal codoping,which extends the absorption edge of TiO2 into visible region,and the presence of multiple phases,which slow the recombination of photoexcited electron/hole pairs.The formation of hydroxyl radicals during the photocatalytic degradation process was detected by photoluminescence probing using terephthalic acid.A mechanism for photocatalysis over the C-Cl-codoped TiO2/ATT composites was proposed.展开更多
Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized wit...Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings.展开更多
Rationally manipulating the in‐situ formed catalytically active surface of catalysts remains a great challenge for a highly efficient water electrolysis.Here,we report a cationic oxidation method which can adjust the...Rationally manipulating the in‐situ formed catalytically active surface of catalysts remains a great challenge for a highly efficient water electrolysis.Here,we report a cationic oxidation method which can adjust the leaching of the in‐situ catalyst and promote the reconstruction of dynamic surface for the oxygen evolution reaction(OER).The chlorine doping can reduce the possibility of triggering in‐situ cobalt oxidation and chlorine leaching,leading to a transformation of the surface chlorine doped LaCoO_(3)(Cl‐LaCoO_(3))into an intricate amorphous(oxygen)hydroxide phase.And thus,Cl‐LaCoO_(3)nanocrystals shows an ultralow overpotential of 342 mV at the current density of 10 mA cm^(–2)and Tafel slope of 76.2 mV dec–1.Surface reconstructed Cl‐LaCoO_(3)is better than many of the most advanced OER catalysts and has proven significant stability.This work provides a new prospect for designing a high‐efficiency electrocatalyst with optimized perovskite‐structure in renewable energy system.展开更多
We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent ...We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.展开更多
Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitro...Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitrogen-doped activated carbons were prepared and characterized by XPS, TPD and N2 physisorption methods. The influences of the surface functional groups on the catalytic performance were discussed base on these results. Among all the samples tested, a nitrogen-doped sample, AC-n-US00, exhibited the best performance, the acety- lene conversion being 92% and vinyl chloride selectivity above 99% at 240 ~C and C2H2 hourly space velocity 30 h- 1. Moreover, the AC-n-US00 catalyst exhibited a stable performance during a 200 h test with a conversion of acetylene higher than 76% at 210 ~C at a C2H2 hourly space velocity 50 h 1. In contrary, oxygen-doped catalyst had lower catalytic activities. A linear relationship between the amount of pyrrolic-N and quaternary-N species and the catalytic activity was observed, indicating that these nitrogen-doped species might be the active sites and the key in tuning the catalytic performance. It is also found that the introduction of nitrogen species into the sample could significantly increase the adsorption amount of acetylene. The deactivation of nitrogen- doped activated carbon might be caused by the decrease of the accessibility to or the total amount of active sites.展开更多
基金supported by the National Basic Research Program of China (973 Program, 2007CB613302)the Natural Science Foundation of Hubei Province (2016CFA078)~~
文摘We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor and ATT as a support for the TiO2 nanoparticles.The photocatalytic activity of the C-Cl-codoped TiO2/ATT composites with mixed anatase/brookite/rutile phases obtained at pH= 3.0 was much higher than that of commercially available Degussa P25 for the photocatalytic degradation of acid red G under visible-light irradiation.The excellent photocatalytic activity of the developed composite originates from the nonmetal codoping,which extends the absorption edge of TiO2 into visible region,and the presence of multiple phases,which slow the recombination of photoexcited electron/hole pairs.The formation of hydroxyl radicals during the photocatalytic degradation process was detected by photoluminescence probing using terephthalic acid.A mechanism for photocatalysis over the C-Cl-codoped TiO2/ATT composites was proposed.
基金supported by the National Natural Science Foundation of China (20803064)the Natural Science Foundation of Zhejiang Province (Y4090348)~~
文摘Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings.
文摘Rationally manipulating the in‐situ formed catalytically active surface of catalysts remains a great challenge for a highly efficient water electrolysis.Here,we report a cationic oxidation method which can adjust the leaching of the in‐situ catalyst and promote the reconstruction of dynamic surface for the oxygen evolution reaction(OER).The chlorine doping can reduce the possibility of triggering in‐situ cobalt oxidation and chlorine leaching,leading to a transformation of the surface chlorine doped LaCoO_(3)(Cl‐LaCoO_(3))into an intricate amorphous(oxygen)hydroxide phase.And thus,Cl‐LaCoO_(3)nanocrystals shows an ultralow overpotential of 342 mV at the current density of 10 mA cm^(–2)and Tafel slope of 76.2 mV dec–1.Surface reconstructed Cl‐LaCoO_(3)is better than many of the most advanced OER catalysts and has proven significant stability.This work provides a new prospect for designing a high‐efficiency electrocatalyst with optimized perovskite‐structure in renewable energy system.
基金Zhejiang Provincial Natural Science Foundation of China(LY17B030010)~~
文摘We recently reported an N‐doped mesoporous carbon(N‐MC)extrudate,with major quaternary N species,prepared by a cheap and convenient method through direct carbonization of wheat flour with silica,which has excellent catalytic performance in acetylene hydrochlorination.Herein,we examined the activity of Au supported on N‐MC(Au/N‐MC)and compared it with that of Au supported on nitrogen‐free mesoporous carbon(Au/MC).The acetylene conversion of Au/N‐MC was 50%at 180°C with an acetylene space velocity of 600 h–1 and VHCl/VC2H2 of 1.1,which was double the activity of Au/MC(25%).The introduced nitrogen atoms acted as anchor sites that stabilized the Au3+species and inhibited the reduction of Au3+to Au0 during the preparation of Au/N‐MC catalysts.
基金Supported by the National Natural Science Foundation of China(21476207)the National Basic Research Program of China(2011CB710800)
文摘Activated carbon was tested as metal-free catalyst for hydrochlorination of acetylene in order to circumvent the problem of environment pollution caused by mercury and high cost by noble metals. Oxygen-doped and nitrogen-doped activated carbons were prepared and characterized by XPS, TPD and N2 physisorption methods. The influences of the surface functional groups on the catalytic performance were discussed base on these results. Among all the samples tested, a nitrogen-doped sample, AC-n-US00, exhibited the best performance, the acety- lene conversion being 92% and vinyl chloride selectivity above 99% at 240 ~C and C2H2 hourly space velocity 30 h- 1. Moreover, the AC-n-US00 catalyst exhibited a stable performance during a 200 h test with a conversion of acetylene higher than 76% at 210 ~C at a C2H2 hourly space velocity 50 h 1. In contrary, oxygen-doped catalyst had lower catalytic activities. A linear relationship between the amount of pyrrolic-N and quaternary-N species and the catalytic activity was observed, indicating that these nitrogen-doped species might be the active sites and the key in tuning the catalytic performance. It is also found that the introduction of nitrogen species into the sample could significantly increase the adsorption amount of acetylene. The deactivation of nitrogen- doped activated carbon might be caused by the decrease of the accessibility to or the total amount of active sites.