Symmetrical relationships between humans and their environment have been referred to as an extension of symmetries in the human geographical system and have drawn great attention. This paper explored the symmetry betw...Symmetrical relationships between humans and their environment have been referred to as an extension of symmetries in the human geographical system and have drawn great attention. This paper explored the symmetry between physical and human systems through fractal analysis of the road and drainage networks in Wuling mountainous area. We found that both the road and drainage networks reflect weak clustering distributions. The evolution of the road network shared a significant self-organizing composition, while the drainage network showed obvious double fraetal characteristics. The geometric fractal dimension of the road network was larger than that of the drainage network. In addition, when assigned a weight relating to hierarchy or length, neither the road network nor drainage network showed a fractal property. These findings indicated that the fractal evolution of the road network shared certain similarities with fractal distribution of the drainage network. The symmetry between the two systems resulted from an interactive process of destroying symmetry at the lower order and reconstructing symmetry at the higher order. The relationships between the fractal dimensions of the rural-urban road network, the drainage network andthe urban system indicated that the development of this area was to achieve the symmetrical isomorphism of physical-human geographical systems.展开更多
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne...The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.展开更多
Catchments health assessment is fundamental to effective catchments management. Generally, an assessment method should be selected to reflect both the purpose of assessment and local characteristics. A trial in Shangh...Catchments health assessment is fundamental to effective catchments management. Generally, an assessment method should be selected to reflect both the purpose of assessment and local characteristics. A trial in Shanghai was conducted to test the method for catchments health assessment in urbanized fiver network area. Seven indicators that described four dimensions of river, river network, land use and function, and local feature were used to assess catchments values; while possible change rate of urbanization and industrialization in the next 3 years were chosen for catchments pressure assessment in the value-pressure model. Factors related to catchments classification, indicators measurement and protection priority have been considered in the development strategies for catchments health management. The results showed that value-pressure assessment was applicable in urbanized catchments health management, particularly when both human and catchments had multiple demands. As a result of over 30-year rapid urbanization, more than 70% of Shanghai fiver network area was still in a healthy condition with high catchments values, among them, 39.3% was under high pressure. Poor water quality, simplified river system and weakened local feature of fiver pattern had largely affected catchments health in Shanghai. Lack of long-term monitoring data would seriously restrict the development and validity of catchments health assessment.展开更多
The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibr...The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibrated and generated for the possible future scenarios of meteorological variables, which are temperature and rainfall by using GCMs (global climate models). The GCM used is SRES A2. The downscaled meteorological variables corresponding to SDSM were then used as input to the ANNs model calibrated with observed station data to simulate the corresponding future streamflow changes in the sub-catchment of Kurau River. This study has discovered the hydrological trend over the catchment. The projected monthly streamflow has shown a decreasing trend due to the increase in the, mean of temperature for overall months, except the month of August and November.展开更多
This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear s...This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear shallow water equations by using an unstructured non-staggered and multiple-level quadtree rectangular mesh,this mesh information is stored in simple data structures and it is easy to obtain a locally high resolution for important region.The intercell fluxes are computed based on the HLL(Harten-Lax-van Leer) approximate Riemann solver with shock capturing capability for computing the dry-to-wet interface of coastal line.The effects of pressure and gravity are included in source term in the model,this treatment can simplify the computation and eliminate numerical imbalance between source and flux terms.The wave model readily provides the radiation stresses that represent the shortwave-averaged forces in a water column for the hydrodynamic model and the wave model takes into account the effect of wave-induced nearshore currents and water level.The coupling model is applied to verify different experimental cases and real life case of considering the wave-current interaction.The calculated results agree with analytical solution,experimental and field data.The results show that the modeling approach presented herein should be useful in simulating the nearshore processes in complicated natural coastal domains.展开更多
基金supported by the National Natural Science Foundation of China project (Grant Nos. 41201130, 41101361, and 41371183)
文摘Symmetrical relationships between humans and their environment have been referred to as an extension of symmetries in the human geographical system and have drawn great attention. This paper explored the symmetry between physical and human systems through fractal analysis of the road and drainage networks in Wuling mountainous area. We found that both the road and drainage networks reflect weak clustering distributions. The evolution of the road network shared a significant self-organizing composition, while the drainage network showed obvious double fraetal characteristics. The geometric fractal dimension of the road network was larger than that of the drainage network. In addition, when assigned a weight relating to hierarchy or length, neither the road network nor drainage network showed a fractal property. These findings indicated that the fractal evolution of the road network shared certain similarities with fractal distribution of the drainage network. The symmetry between the two systems resulted from an interactive process of destroying symmetry at the lower order and reconstructing symmetry at the higher order. The relationships between the fractal dimensions of the rural-urban road network, the drainage network andthe urban system indicated that the development of this area was to achieve the symmetrical isomorphism of physical-human geographical systems.
基金Under the auspices of Special Fund for Scientific Research in the Public Interestgranted by Ministry of Water Resources(No.2012010072,200701024)+3 种基金Key Program of National Natural Science Foundation of China(No.40730635)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2011491111)Research Foundation of Nanjing University of Information Science and Technology(No.20100406)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.
基金Under the auspices of Shanghai Natural Science Foundation (No. 09ZR1409100)National Natural Science Foundation of China (No. 40871016)Key Program of National Natural Science Foundation of China (No. 40730526)
文摘Catchments health assessment is fundamental to effective catchments management. Generally, an assessment method should be selected to reflect both the purpose of assessment and local characteristics. A trial in Shanghai was conducted to test the method for catchments health assessment in urbanized fiver network area. Seven indicators that described four dimensions of river, river network, land use and function, and local feature were used to assess catchments values; while possible change rate of urbanization and industrialization in the next 3 years were chosen for catchments pressure assessment in the value-pressure model. Factors related to catchments classification, indicators measurement and protection priority have been considered in the development strategies for catchments health management. The results showed that value-pressure assessment was applicable in urbanized catchments health management, particularly when both human and catchments had multiple demands. As a result of over 30-year rapid urbanization, more than 70% of Shanghai fiver network area was still in a healthy condition with high catchments values, among them, 39.3% was under high pressure. Poor water quality, simplified river system and weakened local feature of fiver pattern had largely affected catchments health in Shanghai. Lack of long-term monitoring data would seriously restrict the development and validity of catchments health assessment.
文摘The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibrated and generated for the possible future scenarios of meteorological variables, which are temperature and rainfall by using GCMs (global climate models). The GCM used is SRES A2. The downscaled meteorological variables corresponding to SDSM were then used as input to the ANNs model calibrated with observed station data to simulate the corresponding future streamflow changes in the sub-catchment of Kurau River. This study has discovered the hydrological trend over the catchment. The projected monthly streamflow has shown a decreasing trend due to the increase in the, mean of temperature for overall months, except the month of August and November.
基金supported by the National Natural Science Foundation of China (Grant No. 50839001)the research grant from Southeast Regional Research Initiative (SERRI,80037)the Coastal Inlets Research Program,ERDC,US Army Corps of Engineers,Vicksburg,MS,USA
文摘This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear shallow water equations by using an unstructured non-staggered and multiple-level quadtree rectangular mesh,this mesh information is stored in simple data structures and it is easy to obtain a locally high resolution for important region.The intercell fluxes are computed based on the HLL(Harten-Lax-van Leer) approximate Riemann solver with shock capturing capability for computing the dry-to-wet interface of coastal line.The effects of pressure and gravity are included in source term in the model,this treatment can simplify the computation and eliminate numerical imbalance between source and flux terms.The wave model readily provides the radiation stresses that represent the shortwave-averaged forces in a water column for the hydrodynamic model and the wave model takes into account the effect of wave-induced nearshore currents and water level.The coupling model is applied to verify different experimental cases and real life case of considering the wave-current interaction.The calculated results agree with analytical solution,experimental and field data.The results show that the modeling approach presented herein should be useful in simulating the nearshore processes in complicated natural coastal domains.