A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self-...A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self- assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of the beta zeolite. The physical properties of the LS-BFMZ composite zeolite were characterized using various techniques, including XRD, IR and SEM techniques. Meanwhile, a possible mechanism regarding the formation of the LS-BFMZ composite zeolite was proposed.展开更多
Lanthanum titanate (La2/3 TiO3) powders were synthesized by hydrothermal method based on the reaction of TiO2, La(NO3)3 and KOH at 160℃ for 24 h followed by the treatment of acidification. The microstructure, mor...Lanthanum titanate (La2/3 TiO3) powders were synthesized by hydrothermal method based on the reaction of TiO2, La(NO3)3 and KOH at 160℃ for 24 h followed by the treatment of acidification. The microstructure, morphology and dielectric properties were investigated by using X-ray diffraction, scanning electron microscope, transmission electron microscope and impedance method. The results show that the La2/3TiO3 particles consist of nearly homogenous and lamellar grains. The particles can be sintered into porous ceramics above 1150℃. The dielectric properties of La2/3 TiO3 show that both the dielectric constant and the dielectric loss tangent decrease with the increase of frequency.展开更多
Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
基金Supported by the Natural Science Foundation of China(21501021 and 11474045)the 2014 Program for Liaoning Excellent Talents in University(LJQ2014138)the Program for Key Laboratory of Photochemical Conversion and Optoelectronic Materials,TIPC,CAS(PCOM201708)
基金supported by the 973 plan item under Grants(2003CB615802)
文摘A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self- assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of the beta zeolite. The physical properties of the LS-BFMZ composite zeolite were characterized using various techniques, including XRD, IR and SEM techniques. Meanwhile, a possible mechanism regarding the formation of the LS-BFMZ composite zeolite was proposed.
文摘Lanthanum titanate (La2/3 TiO3) powders were synthesized by hydrothermal method based on the reaction of TiO2, La(NO3)3 and KOH at 160℃ for 24 h followed by the treatment of acidification. The microstructure, morphology and dielectric properties were investigated by using X-ray diffraction, scanning electron microscope, transmission electron microscope and impedance method. The results show that the La2/3TiO3 particles consist of nearly homogenous and lamellar grains. The particles can be sintered into porous ceramics above 1150℃. The dielectric properties of La2/3 TiO3 show that both the dielectric constant and the dielectric loss tangent decrease with the increase of frequency.
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.