Sixteen Scenedesmus species or strains have been employed to investigate the maximum capacity of nickel (Ni) accumulation in 10 mg/L Ni solution. The results showed that the capacity of accumulating Ni from aqueou...Sixteen Scenedesmus species or strains have been employed to investigate the maximum capacity of nickel (Ni) accumulation in 10 mg/L Ni solution. The results showed that the capacity of accumulating Ni from aqueous solution in 16 Scenedesmus species or strains showed the diversity. S. quadricauda freshwater algae culture collection of the Institute of Hydrobiology (FACHB) 44 and S. quadricauda FACHB 506 performed much more capacity of Ni accumulation than other species such as Scenedesmus sp. FACHB 416 and Scenedesmus sp. FACHB 489. Sequestration of Ni ions from aqueous solution was very efficient (26.7 mg Ni/g dry weight, in the 100 mg/L Ni solution) in S. quadricauda FACHB 44. The kinetics of Ni binding indicated that Ni bioaccumulation, in algal cell of S. quadricauda FACHB 44, possessed a rapid biosorption (5 min) and an slow bioaccumulation (2-3 h). More than 70% of Ni binding in algal cell were accumulated by biosorption and the remaining 20%-30% were bioaccumulated by energy_consumed transportation. It is much more higher ratio of energy_consumed transportation in S. quadricauda FACHB 44 than in other algae. Both the transmission electron microscope (TEM) and the energy_dispersive X_ray (EDX) microanalyses also revealed the different mechanisms of bioaccumulation in the various subcellular regions: a very fast adsorption in the cell wall; and a time_dependent absorption in protoplasm, specially in starch and chromatin.展开更多
In order to better monitor N and P pollutants, heavy metals, pesticides and other organic pollutants in water areas, we researched sensitivity and tolerance of aquatic algae on water environment and effects of the pol...In order to better monitor N and P pollutants, heavy metals, pesticides and other organic pollutants in water areas, we researched sensitivity and tolerance of aquatic algae on water environment and effects of the pollutants on algae population, analyzing toxin and enrichment of pollutants on algae. The results indicated that aquatic alga is a better indicator for some pollutants in water, for which water contamination can be surveyed and analyzed rapidly.展开更多
For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR an...For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR and microcystin-LR are 63.0% and 66. 7%, respectively. Experiments indicate that lpomoea aquatica can absorb microcystin by using enzyme-linked immunosorbent assay (ELISA), and the roots absorb more toxins than leaves and stems. Fluorescence in situ hybridization (FISH) is used to analyze the density of microcystin degrading bacteria in the AVB sediment. Two species of microcystin degrading bacteria are detected, which indicate that microcystin bio-degradation process happened in the AVB. Protozoa and metazoa are abundant in root spheres. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. are dominant species. The predation functions of protozoa and metazoa have a positive effect on the removal of cyanobacteria and microcystin.展开更多
[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga,...[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.展开更多
The effects of different phosphorus(P) concentrations(0.36, 3.6, and 36 μmol/L corresponding to low-, middle-, and high-P concentration groups, respectively) and nitrogen(N)/P ratios on the growth and photosynthetic ...The effects of different phosphorus(P) concentrations(0.36, 3.6, and 36 μmol/L corresponding to low-, middle-, and high-P concentration groups, respectively) and nitrogen(N)/P ratios on the growth and photosynthetic characteristics of S keletonema costatum and Prorocentrum donghaiense were studied. For both species, the high-P(HP) concentration group showed the greatest algal density and highest specifi c growth rate. Changes in the maximum effi ciency of photosystem Ⅱ(F _v/F_m) were monitored under the various P and N/P conditions. The largest decrease in F _v/F_m was in the low-P(LP) group in S. costatum and in the HP group in P. donghaiense. There were high rapid light curves and photochemical quantum yields(Φ _(PSⅡ)) for S. costatum in the HP group, while the actual photosynthetic capacity was higher in P. donghaiense than in S. costatum in the MP group. Under eutrophic but relatively P-restricted conditions, P. donghaiense had higher photosynthetic activity and potential, which could cause this dinofl agellate to increasingly dominate the phytoplankton community in these conditions. Under the same P concentration and N/P ratio, P. donghaiense had a larger relative maximum rate of electron transport and higher Φ _(PSⅡ) values than those of S. costatum. These differences between P. donghaiense and S. costatum may explain the interaction and succession patterns of these two species in the Changjiang(Yangtze) River estuary from a photosynthesis perspective.展开更多
Over the past few years, harmful algal blooms (HABs), such as red tides, have been frequently observed in coastal zones worldwide. The natural allelopathic interactions among macroalgae and red tide microalgae can a...Over the past few years, harmful algal blooms (HABs), such as red tides, have been frequently observed in coastal zones worldwide. The natural allelopathic interactions among macroalgae and red tide microalgae can alter the structure and succession of aquatic ecosystems. We investigated the influence of four environmental factors (temperature, salinity, light, and pH) on the allelopathic effects of the macroalgae Corallina pilulifera on red-tide forming Heterosigma akashiwo under laboratory conditions. Each of the factors had four levels: temperature (15, 20, 25, and 30℃), salinity (10, 20, 30, and 40), light (20, 100, 200 and 400 gmol/(m2.s)), and pH (5.5, 7, 8.5, and 10. Two-factor experiments were designed for each two environmental factors, with six combination treatments (temperature-salinity, temperature-light, temperature-pH, salinity-light, salinity-pH, and light-pH). Results showed that the allelopathic effect was significantly influenced by temperature, salinity, light, and pH. As single factors, the low temperature (15 ℃), low salinity (10), high-intensity light (400umol/(m2.s)), and high pH (10) treatments substantially enhanced the allelopathic effect. The strongest allelopathic effect of C. pilulifera on H. akashiwo was observed under the following treatments: 15℃ and salinity of 40, 25℃ and pH 10, 25℃ with medium- to high-intensity light at 200-400 umol/(m2.s), 400umol/(m2.s) and salinity of 10, 400 gmol/(m2·s) and pH 10, and pH 10 with a salinity of 40.展开更多
In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies....In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorurn, but no significant effect is found in this study.展开更多
Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on sea...Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on seagrass beds by direct and indirect ways. The competition for living space and using resources is the most direct effect on seagrass beds when macroalgae are blooming in an aquatic ecosystem. The consequence of macroalgae blooms(e.g., light reduction, hypoxia, and decomposition) can produce significant indirect effects on seagrass beds. Light reduction by the macroalgae can decrease the growth and recruitment of seagrasses, and decomposition of macroalgae mats can increase the anoxic and eutrophic conditions, which can further constrict the seagrass growth. Meanwhile, the presence of seagrass shoots can provide substrate for the macroalgae blooms. Controlling nutrient sources from the land to coastal waters is a general efficient way for coastal management. Researching into the synergistical effect of climate change and anthropognic nutrient loads on the interaction between searsasses and macroalgae can provide valuable information to decrease the negative effects of macroalgae blooms on seagrasses in eutrophic areas.展开更多
Three new species of Batrachospermum Roth (Batrachospermales, Rhodophyta) from China are described in this paper. B. yunnanense sp. nov. has long-cylindrical trichogynes with long stalks and is diagnostic of section V...Three new species of Batrachospermum Roth (Batrachospermales, Rhodophyta) from China are described in this paper. B. yunnanense sp. nov. has long-cylindrical trichogynes with long stalks and is diagnostic of section Virescentia. Within this section, B. yunnanense is similar to B. helminthosum Bory emend. Sheath et al., but it is dioecious and has curved carpogonial branches, while the latter is monoecious and has straight carpogonial branches. It is also similar to B. transtaganum Reis, but it differs from the latter in long carpogonia, big carposporophytes and carposporangia. It is considered that B. nothocladoideum sp. nov. is assigned to section Contorta, subsection Kushiroense, because its carpogonial branches are twisted and gonimoblast filaments are loosely agglomerated. This new species similar to B. iriomotense Kumano, but with short fascicles, long-ovoid or subpyriform cells, numerous terminal hairs, long-ellipsoid trichogynes, big carposporophytes and small carpo- sporangia. The plant is quite tough and cartilaginous and similar to Nothocladus in gross morphology, but its carposporophytes are compact instead of diffuse. This shows that it may be a transitional species between section Contorta and genus Nothocladus. So, B. transitorium sp. nov. should belong to section Contorta, subsection Kushiroense, because of its curved or twisted carpogonial branches and loosely agglomerated gonimoblast filaments, with globose or subglobose cells in fascicles similar to B. spermatiophorum Vis et Sheath, but no colourless spermatiophores. In terms of small and numerous carposporophytes, B. transitorium sp. nov. is similar to some species of section Batrachospermum. However, their other features are unique, indicating its transitional nature between section Contorta and Batrachospermum.展开更多
An important filamentous industrial fungus,Rhizopus cohnii(R.cohnii),was used as an efficient biosorbent for removing cadmium from wastewater.The sorption conditions,such as pH,the dose of biomass and the initial conc...An important filamentous industrial fungus,Rhizopus cohnii(R.cohnii),was used as an efficient biosorbent for removing cadmium from wastewater.The sorption conditions,such as pH,the dose of biomass and the initial concentration of cadmium were examined.Two kinds of adsorption models were applied to simulate the biosorption data.The uptake of cadmium was higher in weak acid condition than in strong acid condition.Nearly no sorption of cadmium occurred when the pH value was lower than 2.0. Biosorption isothermal data could be well simulated by both Langmuir and Freundlich models.Langmuir simulation of the biosorption showed that the maximum uptake of cadmium was 40.5 mg/g(0.36 mmol/g)in the optimal conditions,which was higher than many other adsorbents,including biosorbents and activated carbon.In addition,the reusability results showed that after five times of sorption and desorption process,the sorption capacity of R.cohnii could still maintain nearly 80%,confirming its practical application in cadmium treatment.Fourier transform infrared spectrum revealed that carboxyl,amino and hydroxyl groups on biosorbent R.cohnii surface were responsible for the biosorption of cadmium.展开更多
The capability ofScenedesmus obliquus to remove cations (K^+, Na^+, Ca^2+, Mg^2+) from saline- alkaline water was investigated at different salinities (0, 5, 10, 15, 20, 25) and carbonate alkalinities (0, 5, ...The capability ofScenedesmus obliquus to remove cations (K^+, Na^+, Ca^2+, Mg^2+) from saline- alkaline water was investigated at different salinities (0, 5, 10, 15, 20, 25) and carbonate alkalinities (0, 5, 10, 15, 20, 25, 30, 35 mmol/L). K^+, Na^+, Ca^2+, and Mg^2+ in saline-alkaline water were efficiently removed by S. obliquus. The maximum removal of the cations (29.37 mg for K^+, 185.85 mg for Na^+, 23.07 mg for Ca^2+, 66.14 mg for Mg^2+) occurred at salinity 25. The maximum removal of K^+ (2.28 mg), Na+ (6.62 mg), Ca^2+ (1.01 mg), and Mg2+ (0.62 mg) occurred at carbonate alkalinities of 25 mmol/L for K*, 35 mmol/L for Na+, 20 mmol/L for Ca2+, and 25 mmol/L for Mf+, respectively. Under a salinity stress, the concentration of Na' in S. obliquus increased significantly, while that of K~ decreased significantly. The concentrations of Ca^2+ and Mg2+ decreased as well. The ratios of K+/Na~, Ca2+/Na^+, and Mg^2+/Na^+ were significantly lower in all salinity treatments than those of the control. Under alkaline stress, the concentrations of Nan and K+ in S. obliquus decreased significantly and the ratios of K^+/Na^+, Ca2+/Na^+, and Mg^2+/Na^+ were significantly higher in all treatments than in the control. Moreover, the concentrations of Ca2+ and Mg2+ in S. obliquus at alkalinities of 5-10 mmol/L were significantly higher than those of the other treatments. The removal of Na+ by S. obliquus mainly occurs through biosorption, and Mg^2+ and Ca^2 + were removed through both biosorption and bioaccumulation.展开更多
The scyphozoan Aurelia aurita (Linnaeus) sp. 1., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal spe...The scyphozoan Aurelia aurita (Linnaeus) sp. 1., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp. 1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus A rtemia nauplii for 12-24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no sig- nificant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.展开更多
Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake...Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.展开更多
Seaweeds are one of the largest producers of biomass in the marine environment. It has been well known that marine algae, especially brown algae was a rich source of biogeinc compounds with antifouling potential that ...Seaweeds are one of the largest producers of biomass in the marine environment. It has been well known that marine algae, especially brown algae was a rich source of biogeinc compounds with antifouling potential that could be ideal alternatives of tributyltin (TBT). In this paper, antifouling potential of the brown algae Laminaria 'sanhai' was explored. Firstly, the dried alga was extracted and the antialgal and antilarval activities were investigated. The EC50 and LC50 values of crude extract of Laminaria 'sanhai' against diatom (Skeletonema costatum) and barnacle larval (Chthamalus challengeri) were 8.9 μg·mL -1 and 12.0 μg·mL -1 respectively. Then, guided by bioassay, the bioactive substances were isolated by liquid-liquid extraction. The antialgal and antilarval activities of isolated fraction were improved with the EC50 value of 7.4 μg· mL -1 against S. costatum and LC50 value of 9.7 μg mL 1 against C. challengeri larvae. Identification by IR, Q-TOFMS and GC-MS of the isolated bioactive substances revealed the abundance of fatty acids. These fatty acids, most with 16, 18 or 20 carbon atoms, contained myristic, hexadecanoic, oleic, linolenic, arachidonic and eicosapentaenoic acids. The results indicated that both the crude extract and the isolated bioactive substances had high antialgal and antilarval activities with no highlighted cytotoxicity which made the brown algae Laminaria 'sanhai' a promising source of the environmentally friendly antifoulants.展开更多
To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two...To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.展开更多
Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in ...Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.展开更多
Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluores...Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence (F_v/F_m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO_4-P. The photosynthetic capacity of photosystem Ⅱ (PSⅡ) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO_3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.展开更多
In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals A1, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of t...In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals A1, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of the three heavy metals decreased significantly during the experimental period in an algal biomass dependent manner. The biofiltration capacity of the alga for A1, Cr, and Zn is 10.1%-72.6%, 52.5%-83.4% and 36.5%,91.7%, respectively. Using more materials resulted in stronger heavy metal removal. Additionally, the concentration of chl-a, TN, TP and DIN of water samples fxom aquariums involving large, medium, and small algal biomass cultivation increased first and then decreased during the experiment. COD value of all three groups decreased with time and displayed algal biomass dependency: more algae resulting in a greater COD value than those of less biomass. Furthermore, changes in COD reflect an obvious organic particles deprivation process of algae. This is the first report on heavy metal removal effect by Gracilaria species. The results suggest that macroalgae can be used as a biofilter for the treatment of nutrient-enriched or heavy-metal polluted water, to which an appropriate time range should be carefully determined.展开更多
Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (He...Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (Heterosigma akashiwo, Alexandrium tamarense and Prorocentrum micans) were inves- tigated. Liquid-liquid fractionation and HPLC analysis for methanol extract of U. pertusa were carried out. Growth of the three microalgae was significantly inhibited by the distilled water extract of U. pertusa at relatively higher concentration. However, the cells of the three microalgae did not die completely even at high concentration. Methanol extract of U. pertusa showed the highest growth inhibition on the three mi- croalgae, and all the cells of the three microalgae were killed at relatively high concentration. The other three organic solvent extracts of U. pertusa had no apparent effect on the three microalgae. The results of bioassays and HPLC analysis suggested that the inhibitory substances in U. pertusa to the microalgal growth had relatively high polarities. H. akashiwo was the most sensitive one while A. tamarense was the most tolerant one to the growth inhibitory substances.展开更多
文摘Sixteen Scenedesmus species or strains have been employed to investigate the maximum capacity of nickel (Ni) accumulation in 10 mg/L Ni solution. The results showed that the capacity of accumulating Ni from aqueous solution in 16 Scenedesmus species or strains showed the diversity. S. quadricauda freshwater algae culture collection of the Institute of Hydrobiology (FACHB) 44 and S. quadricauda FACHB 506 performed much more capacity of Ni accumulation than other species such as Scenedesmus sp. FACHB 416 and Scenedesmus sp. FACHB 489. Sequestration of Ni ions from aqueous solution was very efficient (26.7 mg Ni/g dry weight, in the 100 mg/L Ni solution) in S. quadricauda FACHB 44. The kinetics of Ni binding indicated that Ni bioaccumulation, in algal cell of S. quadricauda FACHB 44, possessed a rapid biosorption (5 min) and an slow bioaccumulation (2-3 h). More than 70% of Ni binding in algal cell were accumulated by biosorption and the remaining 20%-30% were bioaccumulated by energy_consumed transportation. It is much more higher ratio of energy_consumed transportation in S. quadricauda FACHB 44 than in other algae. Both the transmission electron microscope (TEM) and the energy_dispersive X_ray (EDX) microanalyses also revealed the different mechanisms of bioaccumulation in the various subcellular regions: a very fast adsorption in the cell wall; and a time_dependent absorption in protoplasm, specially in starch and chromatin.
基金Supported by China Agriculture Research System (CARS-49)~~
文摘In order to better monitor N and P pollutants, heavy metals, pesticides and other organic pollutants in water areas, we researched sensitivity and tolerance of aquatic algae on water environment and effects of the pollutants on algae population, analyzing toxin and enrichment of pollutants on algae. The results indicated that aquatic alga is a better indicator for some pollutants in water, for which water contamination can be surveyed and analyzed rapidly.
基金The National Natural Science Foundation of China(No50378014),the National High Technology Research and Develop-ment Program of China (863Program) (No2002AA601011)
文摘For purifying raw water for tap water treatment, the aquatic vegetable bed (AVB) experiment has been carded out in a hypertrophic waterfront of Taihu Lake, China. The average removal rates of total microcystin-RR and microcystin-LR are 63.0% and 66. 7%, respectively. Experiments indicate that lpomoea aquatica can absorb microcystin by using enzyme-linked immunosorbent assay (ELISA), and the roots absorb more toxins than leaves and stems. Fluorescence in situ hybridization (FISH) is used to analyze the density of microcystin degrading bacteria in the AVB sediment. Two species of microcystin degrading bacteria are detected, which indicate that microcystin bio-degradation process happened in the AVB. Protozoa and metazoa are abundant in root spheres. Aspidisca sp., Vorticella sp., Philodina sp., and Lecane sp. are dominant species. The predation functions of protozoa and metazoa have a positive effect on the removal of cyanobacteria and microcystin.
文摘[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.
基金Supported by the“Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues”of Chinese Academy of Sciences(No.XDA05030401)the National Basic Research Program of China(973 Program)(No.2014CB441504)+1 种基金the Key Program of National Natural Science Foundation of China(No.41230963)the NSFCShandong Province Joint Fund Project(No.U1406403)
文摘The effects of different phosphorus(P) concentrations(0.36, 3.6, and 36 μmol/L corresponding to low-, middle-, and high-P concentration groups, respectively) and nitrogen(N)/P ratios on the growth and photosynthetic characteristics of S keletonema costatum and Prorocentrum donghaiense were studied. For both species, the high-P(HP) concentration group showed the greatest algal density and highest specifi c growth rate. Changes in the maximum effi ciency of photosystem Ⅱ(F _v/F_m) were monitored under the various P and N/P conditions. The largest decrease in F _v/F_m was in the low-P(LP) group in S. costatum and in the HP group in P. donghaiense. There were high rapid light curves and photochemical quantum yields(Φ _(PSⅡ)) for S. costatum in the HP group, while the actual photosynthetic capacity was higher in P. donghaiense than in S. costatum in the MP group. Under eutrophic but relatively P-restricted conditions, P. donghaiense had higher photosynthetic activity and potential, which could cause this dinofl agellate to increasingly dominate the phytoplankton community in these conditions. Under the same P concentration and N/P ratio, P. donghaiense had a larger relative maximum rate of electron transport and higher Φ _(PSⅡ) values than those of S. costatum. These differences between P. donghaiense and S. costatum may explain the interaction and succession patterns of these two species in the Changjiang(Yangtze) River estuary from a photosynthesis perspective.
基金Supported by the National Natural Science Foundation of China(No.31200400)
文摘Over the past few years, harmful algal blooms (HABs), such as red tides, have been frequently observed in coastal zones worldwide. The natural allelopathic interactions among macroalgae and red tide microalgae can alter the structure and succession of aquatic ecosystems. We investigated the influence of four environmental factors (temperature, salinity, light, and pH) on the allelopathic effects of the macroalgae Corallina pilulifera on red-tide forming Heterosigma akashiwo under laboratory conditions. Each of the factors had four levels: temperature (15, 20, 25, and 30℃), salinity (10, 20, 30, and 40), light (20, 100, 200 and 400 gmol/(m2.s)), and pH (5.5, 7, 8.5, and 10. Two-factor experiments were designed for each two environmental factors, with six combination treatments (temperature-salinity, temperature-light, temperature-pH, salinity-light, salinity-pH, and light-pH). Results showed that the allelopathic effect was significantly influenced by temperature, salinity, light, and pH. As single factors, the low temperature (15 ℃), low salinity (10), high-intensity light (400umol/(m2.s)), and high pH (10) treatments substantially enhanced the allelopathic effect. The strongest allelopathic effect of C. pilulifera on H. akashiwo was observed under the following treatments: 15℃ and salinity of 40, 25℃ and pH 10, 25℃ with medium- to high-intensity light at 200-400 umol/(m2.s), 400umol/(m2.s) and salinity of 10, 400 gmol/(m2·s) and pH 10, and pH 10 with a salinity of 40.
基金Supported by the Innovation Project of CAS (No.KZCX2-YW-426)a Provincial Project of Hubei (No. 2006AA305A0402)the National Basic Research Program of China (973 Program, No. 2002CB 412306)
文摘In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorurn, but no significant effect is found in this study.
基金funded by the Natural Science Foundation of China (41106099)CAS Scientific Project of Innovation and Interdisciplinary, the Ministry of Science and Technology Project Foundation (2014FY210600)+1 种基金Yantai Science and Technology Bureau (2011061)the Natural Science Foundation of Shandong Province (ZR 2009EQ006)
文摘Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on seagrass beds by direct and indirect ways. The competition for living space and using resources is the most direct effect on seagrass beds when macroalgae are blooming in an aquatic ecosystem. The consequence of macroalgae blooms(e.g., light reduction, hypoxia, and decomposition) can produce significant indirect effects on seagrass beds. Light reduction by the macroalgae can decrease the growth and recruitment of seagrasses, and decomposition of macroalgae mats can increase the anoxic and eutrophic conditions, which can further constrict the seagrass growth. Meanwhile, the presence of seagrass shoots can provide substrate for the macroalgae blooms. Controlling nutrient sources from the land to coastal waters is a general efficient way for coastal management. Researching into the synergistical effect of climate change and anthropognic nutrient loads on the interaction between searsasses and macroalgae can provide valuable information to decrease the negative effects of macroalgae blooms on seagrasses in eutrophic areas.
基金Project No. 30270119 and 39899400 supported by the National Nature Science Foundation of China.
文摘Three new species of Batrachospermum Roth (Batrachospermales, Rhodophyta) from China are described in this paper. B. yunnanense sp. nov. has long-cylindrical trichogynes with long stalks and is diagnostic of section Virescentia. Within this section, B. yunnanense is similar to B. helminthosum Bory emend. Sheath et al., but it is dioecious and has curved carpogonial branches, while the latter is monoecious and has straight carpogonial branches. It is also similar to B. transtaganum Reis, but it differs from the latter in long carpogonia, big carposporophytes and carposporangia. It is considered that B. nothocladoideum sp. nov. is assigned to section Contorta, subsection Kushiroense, because its carpogonial branches are twisted and gonimoblast filaments are loosely agglomerated. This new species similar to B. iriomotense Kumano, but with short fascicles, long-ovoid or subpyriform cells, numerous terminal hairs, long-ellipsoid trichogynes, big carposporophytes and small carpo- sporangia. The plant is quite tough and cartilaginous and similar to Nothocladus in gross morphology, but its carposporophytes are compact instead of diffuse. This shows that it may be a transitional species between section Contorta and genus Nothocladus. So, B. transitorium sp. nov. should belong to section Contorta, subsection Kushiroense, because of its curved or twisted carpogonial branches and loosely agglomerated gonimoblast filaments, with globose or subglobose cells in fascicles similar to B. spermatiophorum Vis et Sheath, but no colourless spermatiophores. In terms of small and numerous carposporophytes, B. transitorium sp. nov. is similar to some species of section Batrachospermum. However, their other features are unique, indicating its transitional nature between section Contorta and Batrachospermum.
基金Project(50830301) supported by the National Natural Science Foundation of ChinaProject(50725825) supported by the National Science Fund for Distinguished Young Scholars of China
文摘An important filamentous industrial fungus,Rhizopus cohnii(R.cohnii),was used as an efficient biosorbent for removing cadmium from wastewater.The sorption conditions,such as pH,the dose of biomass and the initial concentration of cadmium were examined.Two kinds of adsorption models were applied to simulate the biosorption data.The uptake of cadmium was higher in weak acid condition than in strong acid condition.Nearly no sorption of cadmium occurred when the pH value was lower than 2.0. Biosorption isothermal data could be well simulated by both Langmuir and Freundlich models.Langmuir simulation of the biosorption showed that the maximum uptake of cadmium was 40.5 mg/g(0.36 mmol/g)in the optimal conditions,which was higher than many other adsorbents,including biosorbents and activated carbon.In addition,the reusability results showed that after five times of sorption and desorption process,the sorption capacity of R.cohnii could still maintain nearly 80%,confirming its practical application in cadmium treatment.Fourier transform infrared spectrum revealed that carboxyl,amino and hydroxyl groups on biosorbent R.cohnii surface were responsible for the biosorption of cadmium.
基金Supported by the Special Research Fund for the National Non-Profit Institutes(East China Sea Fisheries Research Institute)(Nos.2009M03,2007Z03)the National Special Research Fund for Non-Profit Sector(Agriculture)(No.200903001-0502)
文摘The capability ofScenedesmus obliquus to remove cations (K^+, Na^+, Ca^2+, Mg^2+) from saline- alkaline water was investigated at different salinities (0, 5, 10, 15, 20, 25) and carbonate alkalinities (0, 5, 10, 15, 20, 25, 30, 35 mmol/L). K^+, Na^+, Ca^2+, and Mg^2+ in saline-alkaline water were efficiently removed by S. obliquus. The maximum removal of the cations (29.37 mg for K^+, 185.85 mg for Na^+, 23.07 mg for Ca^2+, 66.14 mg for Mg^2+) occurred at salinity 25. The maximum removal of K^+ (2.28 mg), Na+ (6.62 mg), Ca^2+ (1.01 mg), and Mg2+ (0.62 mg) occurred at carbonate alkalinities of 25 mmol/L for K*, 35 mmol/L for Na+, 20 mmol/L for Ca2+, and 25 mmol/L for Mf+, respectively. Under a salinity stress, the concentration of Na' in S. obliquus increased significantly, while that of K~ decreased significantly. The concentrations of Ca^2+ and Mg2+ decreased as well. The ratios of K+/Na~, Ca2+/Na^+, and Mg^2+/Na^+ were significantly lower in all salinity treatments than those of the control. Under alkaline stress, the concentrations of Nan and K+ in S. obliquus decreased significantly and the ratios of K^+/Na^+, Ca2+/Na^+, and Mg^2+/Na^+ were significantly higher in all treatments than in the control. Moreover, the concentrations of Ca2+ and Mg2+ in S. obliquus at alkalinities of 5-10 mmol/L were significantly higher than those of the other treatments. The removal of Na+ by S. obliquus mainly occurs through biosorption, and Mg^2+ and Ca^2 + were removed through both biosorption and bioaccumulation.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB403603)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA0503 0401)the National Natural Science Founda-tion of Shandong Province,China(No.ZR2012DQ005)
文摘The scyphozoan Aurelia aurita (Linnaeus) sp. 1., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp. 1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus A rtemia nauplii for 12-24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no sig- nificant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.
基金Supported in part by the Australian Research Council (Small Grant Scheme) and a Royal Thai Government Scholarship.
文摘Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.
基金supported by the National Natural Science Foundation of China(No.41376106)the National Key Research and Development Program(No.2016YFC1402101)the research program from National Marine Hazard Mitigation Service(No.2014AA060)
文摘Seaweeds are one of the largest producers of biomass in the marine environment. It has been well known that marine algae, especially brown algae was a rich source of biogeinc compounds with antifouling potential that could be ideal alternatives of tributyltin (TBT). In this paper, antifouling potential of the brown algae Laminaria 'sanhai' was explored. Firstly, the dried alga was extracted and the antialgal and antilarval activities were investigated. The EC50 and LC50 values of crude extract of Laminaria 'sanhai' against diatom (Skeletonema costatum) and barnacle larval (Chthamalus challengeri) were 8.9 μg·mL -1 and 12.0 μg·mL -1 respectively. Then, guided by bioassay, the bioactive substances were isolated by liquid-liquid extraction. The antialgal and antilarval activities of isolated fraction were improved with the EC50 value of 7.4 μg· mL -1 against S. costatum and LC50 value of 9.7 μg mL 1 against C. challengeri larvae. Identification by IR, Q-TOFMS and GC-MS of the isolated bioactive substances revealed the abundance of fatty acids. These fatty acids, most with 16, 18 or 20 carbon atoms, contained myristic, hexadecanoic, oleic, linolenic, arachidonic and eicosapentaenoic acids. The results indicated that both the crude extract and the isolated bioactive substances had high antialgal and antilarval activities with no highlighted cytotoxicity which made the brown algae Laminaria 'sanhai' a promising source of the environmentally friendly antifoulants.
基金Funded by the Natural Science Foundation of China (No.50178070)the Natural Science Foundation of Chongqing (Nos. 8091 and 7136)
文摘To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups(No.40821004)the High Technology Research and Development Program of China(863 Program)(No.2008AA09Z107)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.
基金Supported by the Technology Program of Basic Research of Qingdao(No.12-1-4-8-(2)-jch)
文摘Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence (F_v/F_m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO_4-P. The photosynthetic capacity of photosystem Ⅱ (PSⅡ) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO_3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.
文摘In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals A1, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of the three heavy metals decreased significantly during the experimental period in an algal biomass dependent manner. The biofiltration capacity of the alga for A1, Cr, and Zn is 10.1%-72.6%, 52.5%-83.4% and 36.5%,91.7%, respectively. Using more materials resulted in stronger heavy metal removal. Additionally, the concentration of chl-a, TN, TP and DIN of water samples fxom aquariums involving large, medium, and small algal biomass cultivation increased first and then decreased during the experiment. COD value of all three groups decreased with time and displayed algal biomass dependency: more algae resulting in a greater COD value than those of less biomass. Furthermore, changes in COD reflect an obvious organic particles deprivation process of algae. This is the first report on heavy metal removal effect by Gracilaria species. The results suggest that macroalgae can be used as a biofilter for the treatment of nutrient-enriched or heavy-metal polluted water, to which an appropriate time range should be carefully determined.
基金This research supported by the Open Research Fund Program of Key Laboratory of Marine Drugs (Ocean University of China), the Ministry of Education of China also by NSFC for Talented Youths (No. 397250239) and the Project under Major State Basic Research of China (No. G1999012011)
文摘Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (Heterosigma akashiwo, Alexandrium tamarense and Prorocentrum micans) were inves- tigated. Liquid-liquid fractionation and HPLC analysis for methanol extract of U. pertusa were carried out. Growth of the three microalgae was significantly inhibited by the distilled water extract of U. pertusa at relatively higher concentration. However, the cells of the three microalgae did not die completely even at high concentration. Methanol extract of U. pertusa showed the highest growth inhibition on the three mi- croalgae, and all the cells of the three microalgae were killed at relatively high concentration. The other three organic solvent extracts of U. pertusa had no apparent effect on the three microalgae. The results of bioassays and HPLC analysis suggested that the inhibitory substances in U. pertusa to the microalgal growth had relatively high polarities. H. akashiwo was the most sensitive one while A. tamarense was the most tolerant one to the growth inhibitory substances.