油样光谱分析是航空发动机磨损状态监测与故障诊断的重要技术,基于光谱数据的航空发动机状态预测有利于发现航空发动机的早期磨损故障。根据光谱数据特征,选取AR模型、BP神经网络模型以及GM(1,1)预测模型作为基础模型,建立了基于最小二...油样光谱分析是航空发动机磨损状态监测与故障诊断的重要技术,基于光谱数据的航空发动机状态预测有利于发现航空发动机的早期磨损故障。根据光谱数据特征,选取AR模型、BP神经网络模型以及GM(1,1)预测模型作为基础模型,建立了基于最小二乘支持向量机的组合预测模型,同时,用粒子群算法对LSSVM的正则化参数以及核函数参数进行了优化。最后利用两组实际的航空发动机光谱分析数据对模型进行了验证,与基础模型的对比结果充分表明,提出的带粒子群优化的最小二乘支持向量机(the Least Squares Support Vector Machines with Particle SwarmOptimization-PSO-LSSVM)的非线性变权重组合预测模型具有更好的预测精度。展开更多
文摘油样光谱分析是航空发动机磨损状态监测与故障诊断的重要技术,基于光谱数据的航空发动机状态预测有利于发现航空发动机的早期磨损故障。根据光谱数据特征,选取AR模型、BP神经网络模型以及GM(1,1)预测模型作为基础模型,建立了基于最小二乘支持向量机的组合预测模型,同时,用粒子群算法对LSSVM的正则化参数以及核函数参数进行了优化。最后利用两组实际的航空发动机光谱分析数据对模型进行了验证,与基础模型的对比结果充分表明,提出的带粒子群优化的最小二乘支持向量机(the Least Squares Support Vector Machines with Particle SwarmOptimization-PSO-LSSVM)的非线性变权重组合预测模型具有更好的预测精度。