Southeast China coastal areas belong to subtropical monsoon climatic zone, thus easily affected by floods resulted from typhoons and rainstorms. Since the areas of river basins are small, rivers flood regulation capac...Southeast China coastal areas belong to subtropical monsoon climatic zone, thus easily affected by floods resulted from typhoons and rainstorms. Since the areas of river basins are small, rivers flood regulation capacities are low, and therefore flood hazard is grave. In this paper, taking the Yongjiang basin in southeast China as an example, the approaches and methods of geographic information system(GIS) applied to flood disaster control and reduction research on small basin are explored. On GIS help the rainfall runoff calculation model and the river channel flood routing model are developed. And the evaluating flood submerged area and the damage assessment models are built supported by digit elevation models. Lastly the decision support system on GIS supported for flood control in research basin has been set up. This greatly improves flood proofing decision making capacities in river basin, and provides valuable information and a mode for flood prevention and reduction in the medium and small basin. Meanwhile, the research indicates that technologies of GIS provide a powerful tool for flood disaster control.展开更多
The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-trati...The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-tration Cs was varied from 0 to 25%. And the superficial gas velocity Ug was at the range of 0-0.096 m·s-1. A fast and objective method for identifying flooding point NF is developed based on the statistical analysis of the pressure fluctuation signals. It is found, the effect of solid concentration on the flooding point NF depends on the gas velocity. At the lower gas velocity (Ug = 0.010 m·s-1), the solid concentration has only a minor effect. However, it displays a very significant effect on the flooding point NF at the medium and high gas velocity. The flooding point NF linearly increases with the gas velocity Ug, at lower solid concentration (Cs = 0, 10%). When Cs = 20%, the behavior of NF versus Ug becomes more complex. The correlations of the flooding characteristics in the slurry stirred tank are proposed by considering the solid concentration effect.展开更多
X-ray fluorescence scanning with synchrotron radiation was performed to study sediment core records of floods in Amur Bay,Sea of Japan.Interlayers of 3–8 mm with abnormally low bromine content were formed by the Razd...X-ray fluorescence scanning with synchrotron radiation was performed to study sediment core records of floods in Amur Bay,Sea of Japan.Interlayers of 3–8 mm with abnormally low bromine content were formed by the Razdolnaya River discharge to the central part of the bay during extreme floods,accompanied by severe storms at sea.Such conditions in the region are typical for periods of deep tropical cyclones(typhoons),to which the distinguished interlayers were compared on the timescale.This approach was made possible thanks to the high rate of sedimentation in the bay(3–5 mm/a) and low bioturbation of sediments under anoxic conditions.展开更多
Physiography and soil in Mae Rim watershed, Chiang Mai Province, Thailand were investigated by using aerial photographs and satellite image in conjunction with field work, and soil infiltration rate and soil shear res...Physiography and soil in Mae Rim watershed, Chiang Mai Province, Thailand were investigated by using aerial photographs and satellite image in conjunction with field work, and soil infiltration rate and soil shear resistance were measured in field. Many factors affecting runoff were analyzed using the Integrated Land and Water Information System (ILWIS). As a result, a model determining flood hazard was set up. Three maps including runoff curve number map, runoff coefficient map, and flood inundation map were created. In addition, the time of concentration was predicted.展开更多
Signal Detection Theory (SDT) offers an unparalleled deterministic set of decision variables necessary to formulate applied risks in transportation. SDT has distinct advantages over basic prediction models since the...Signal Detection Theory (SDT) offers an unparalleled deterministic set of decision variables necessary to formulate applied risks in transportation. SDT has distinct advantages over basic prediction models since the latter may not represent an entirely accurate analysis. Thresholds based on elements of stimulus (signal and noise) and response for: a Type I discrimination of response variable where decision outcomes and rates are computed for metacognition to discriminate a Type II of decision outcomes was set. We also adapted the classical Dijkstra's shortest path algorithm within a GIS environment using Avenue programming. Contours derived from LiDARwere used to set flood levels while satellite imagery corresponding to Red River of the North inundated (signal) areas were acquired amongst other spatial datasets. The signal information was further dichotomized using a binary yes-no model. Origin and destination points constrained within Fargo-Morehead were generated using a random point generator. From these points, trips were generated with some connected segments traversing through flooded areas. By analyzing False Alarm Rate (FAR) and Corrected Rejection (CRR) computation, we found out that, when Hit Rate (HR) and FAR are both low then there was an increased corresponding sensitivity. At 30-35 ft flood level, the values for FAR and HR was 0.97 and 0.91 respectively.When FAR〉HR, lower set flood levels offered numerous route choices. Corresponding routes with associated impedance can be classified for risk-averse drivers or risk-takers While the risk-averse avoid risky and unfavorable routes, the risk-taker optimizes at an adjustment factor of ω = 0.1 or ω = 0.2. An idealistic stage is achieved for a conservative, co, equal to 0.4 or 0.5, which indicates maximum achievement in terms of time gain and safety simultaneously. At ω = 0.0 the prevailing conditions can be considered unrealistic since they incorporate areas considered impassable with absolute resistance like segments with a "Road Closed" or "Detour" sign. The applicability of our approach can be used to design multi-level and multi-modal transportation systems involving risk.展开更多
No simple solution to flood prevention is accessible. This research provides a brief summary of the hydrologic and hydraulic methodology that can be used to develop specific details that integrated the flood informati...No simple solution to flood prevention is accessible. This research provides a brief summary of the hydrologic and hydraulic methodology that can be used to develop specific details that integrated the flood information tool. It permits rapid analysis of a wide variety of stream discharge data and topographic mapping to avoid the flood hazard over entire floodplain boundaries. This paper focuses on the water floodplain hazard in Wadi Asla-Jaddah-Saudi Arabia. The most common type of rainfall in the study area is that accompanied by thunderstorms, which usually fall during the winter season as well as in the spring. The primarily evaluation of this problem and the solution is contemplate. The more essential and "doable" elements of a solutions and recommendations are discussed in this research.展开更多
Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a t...Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.展开更多
文摘Southeast China coastal areas belong to subtropical monsoon climatic zone, thus easily affected by floods resulted from typhoons and rainstorms. Since the areas of river basins are small, rivers flood regulation capacities are low, and therefore flood hazard is grave. In this paper, taking the Yongjiang basin in southeast China as an example, the approaches and methods of geographic information system(GIS) applied to flood disaster control and reduction research on small basin are explored. On GIS help the rainfall runoff calculation model and the river channel flood routing model are developed. And the evaluating flood submerged area and the damage assessment models are built supported by digit elevation models. Lastly the decision support system on GIS supported for flood control in research basin has been set up. This greatly improves flood proofing decision making capacities in river basin, and provides valuable information and a mode for flood prevention and reduction in the medium and small basin. Meanwhile, the research indicates that technologies of GIS provide a powerful tool for flood disaster control.
文摘The flooding characteristics of hydrofoil impeller were systematically investigated in a two-and three-phase 383 mm i.d. stirred tank operated on air, water and spherical glass beads. The volumetric solid concen-tration Cs was varied from 0 to 25%. And the superficial gas velocity Ug was at the range of 0-0.096 m·s-1. A fast and objective method for identifying flooding point NF is developed based on the statistical analysis of the pressure fluctuation signals. It is found, the effect of solid concentration on the flooding point NF depends on the gas velocity. At the lower gas velocity (Ug = 0.010 m·s-1), the solid concentration has only a minor effect. However, it displays a very significant effect on the flooding point NF at the medium and high gas velocity. The flooding point NF linearly increases with the gas velocity Ug, at lower solid concentration (Cs = 0, 10%). When Cs = 20%, the behavior of NF versus Ug becomes more complex. The correlations of the flooding characteristics in the slurry stirred tank are proposed by considering the solid concentration effect.
文摘X-ray fluorescence scanning with synchrotron radiation was performed to study sediment core records of floods in Amur Bay,Sea of Japan.Interlayers of 3–8 mm with abnormally low bromine content were formed by the Razdolnaya River discharge to the central part of the bay during extreme floods,accompanied by severe storms at sea.Such conditions in the region are typical for periods of deep tropical cyclones(typhoons),to which the distinguished interlayers were compared on the timescale.This approach was made possible thanks to the high rate of sedimentation in the bay(3–5 mm/a) and low bioturbation of sediments under anoxic conditions.
文摘Physiography and soil in Mae Rim watershed, Chiang Mai Province, Thailand were investigated by using aerial photographs and satellite image in conjunction with field work, and soil infiltration rate and soil shear resistance were measured in field. Many factors affecting runoff were analyzed using the Integrated Land and Water Information System (ILWIS). As a result, a model determining flood hazard was set up. Three maps including runoff curve number map, runoff coefficient map, and flood inundation map were created. In addition, the time of concentration was predicted.
文摘Signal Detection Theory (SDT) offers an unparalleled deterministic set of decision variables necessary to formulate applied risks in transportation. SDT has distinct advantages over basic prediction models since the latter may not represent an entirely accurate analysis. Thresholds based on elements of stimulus (signal and noise) and response for: a Type I discrimination of response variable where decision outcomes and rates are computed for metacognition to discriminate a Type II of decision outcomes was set. We also adapted the classical Dijkstra's shortest path algorithm within a GIS environment using Avenue programming. Contours derived from LiDARwere used to set flood levels while satellite imagery corresponding to Red River of the North inundated (signal) areas were acquired amongst other spatial datasets. The signal information was further dichotomized using a binary yes-no model. Origin and destination points constrained within Fargo-Morehead were generated using a random point generator. From these points, trips were generated with some connected segments traversing through flooded areas. By analyzing False Alarm Rate (FAR) and Corrected Rejection (CRR) computation, we found out that, when Hit Rate (HR) and FAR are both low then there was an increased corresponding sensitivity. At 30-35 ft flood level, the values for FAR and HR was 0.97 and 0.91 respectively.When FAR〉HR, lower set flood levels offered numerous route choices. Corresponding routes with associated impedance can be classified for risk-averse drivers or risk-takers While the risk-averse avoid risky and unfavorable routes, the risk-taker optimizes at an adjustment factor of ω = 0.1 or ω = 0.2. An idealistic stage is achieved for a conservative, co, equal to 0.4 or 0.5, which indicates maximum achievement in terms of time gain and safety simultaneously. At ω = 0.0 the prevailing conditions can be considered unrealistic since they incorporate areas considered impassable with absolute resistance like segments with a "Road Closed" or "Detour" sign. The applicability of our approach can be used to design multi-level and multi-modal transportation systems involving risk.
文摘No simple solution to flood prevention is accessible. This research provides a brief summary of the hydrologic and hydraulic methodology that can be used to develop specific details that integrated the flood information tool. It permits rapid analysis of a wide variety of stream discharge data and topographic mapping to avoid the flood hazard over entire floodplain boundaries. This paper focuses on the water floodplain hazard in Wadi Asla-Jaddah-Saudi Arabia. The most common type of rainfall in the study area is that accompanied by thunderstorms, which usually fall during the winter season as well as in the spring. The primarily evaluation of this problem and the solution is contemplate. The more essential and "doable" elements of a solutions and recommendations are discussed in this research.
基金supported by the Nonprofit Sector Specific Research of Ministry of Water Resources (Grant No. 200701015)
文摘Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.