Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ...Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.展开更多
背景:活性氧可能与肌腱病发生、发展密切相关,但其确切作用及相关信号转导机制尚未进行全面总结。目的:综述目前临床或临床前原始研究,对活性氧在肌腱病中的作用及相关信号转导通路进行归纳总结,探究其作用特点以及是否存在统一的下游...背景:活性氧可能与肌腱病发生、发展密切相关,但其确切作用及相关信号转导机制尚未进行全面总结。目的:综述目前临床或临床前原始研究,对活性氧在肌腱病中的作用及相关信号转导通路进行归纳总结,探究其作用特点以及是否存在统一的下游通路。方法:通过计算机对PubMed、Embase、Web of Science以及中国知网、万方、维普数据库中的相关原始研究进行检索,依据入选标准对检索结果进行筛选、排除,最终纳入90篇文献进行综述分析。结果与结论:①活性氧可通过同时作用于肌腱细胞和细胞外基质来影响肌腱愈合方向,其作用方式呈双面作用特点,浓度可能是决定其作用方向的关键,低剂量活性氧可以参与肌腱正常生理愈合活动或肌腱组织具有刺激自适应性可能是产生这种作用特点的内在机制。②活性氧主要是通过基质金属蛋白酶、丝裂原活化蛋白激酶、线粒体凋亡、叉头转录因子O家族、自噬、炎症以及抗氧化信号转导通路,来改变肌腱细胞外基质的组成和结构,影响肌腱细胞正常修复、应对外界和维持生存能力,对肌腱状态造成影响。③不同的活性氧刺激强度、时间以及外在环境可能会造成下游分子通路的不同改变,从而对肌腱产生不同影响。④由于目前纳入的活性氧正、负面作用的考察文献数量差距较大,可能对寻找活性氧在肌腱中作用特点的背后因素造成一定的分析误差;另外由于大多数实验干预条件和关注结果比较单一,具体活性氧的时效、量效机制以及与其他干预因素的协同作用未能明确,也未能构建活性氧在肌腱病中的分子作用整体体系。⑤文章结果表明,活性氧未来或许可以作为一种有利因素参与肌腱病的治疗和预防,并促进之后肌腱病中氧化应激信号转导通路和整体分子作用体系的探索,也为不同抗氧化剂在肌腱病中的治疗策略打下研究基础,以更好地达到防治肌腱损伤变性的目的。展开更多
基金supported by Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT)#1200836,#1210644,and#1240888,and Agencia Nacional de Investigación y Desarrollo(ANID)-FONDAP#15130011(to LL)FONDECYT#3230227(to MFG).
文摘Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.
文摘背景:活性氧可能与肌腱病发生、发展密切相关,但其确切作用及相关信号转导机制尚未进行全面总结。目的:综述目前临床或临床前原始研究,对活性氧在肌腱病中的作用及相关信号转导通路进行归纳总结,探究其作用特点以及是否存在统一的下游通路。方法:通过计算机对PubMed、Embase、Web of Science以及中国知网、万方、维普数据库中的相关原始研究进行检索,依据入选标准对检索结果进行筛选、排除,最终纳入90篇文献进行综述分析。结果与结论:①活性氧可通过同时作用于肌腱细胞和细胞外基质来影响肌腱愈合方向,其作用方式呈双面作用特点,浓度可能是决定其作用方向的关键,低剂量活性氧可以参与肌腱正常生理愈合活动或肌腱组织具有刺激自适应性可能是产生这种作用特点的内在机制。②活性氧主要是通过基质金属蛋白酶、丝裂原活化蛋白激酶、线粒体凋亡、叉头转录因子O家族、自噬、炎症以及抗氧化信号转导通路,来改变肌腱细胞外基质的组成和结构,影响肌腱细胞正常修复、应对外界和维持生存能力,对肌腱状态造成影响。③不同的活性氧刺激强度、时间以及外在环境可能会造成下游分子通路的不同改变,从而对肌腱产生不同影响。④由于目前纳入的活性氧正、负面作用的考察文献数量差距较大,可能对寻找活性氧在肌腱中作用特点的背后因素造成一定的分析误差;另外由于大多数实验干预条件和关注结果比较单一,具体活性氧的时效、量效机制以及与其他干预因素的协同作用未能明确,也未能构建活性氧在肌腱病中的分子作用整体体系。⑤文章结果表明,活性氧未来或许可以作为一种有利因素参与肌腱病的治疗和预防,并促进之后肌腱病中氧化应激信号转导通路和整体分子作用体系的探索,也为不同抗氧化剂在肌腱病中的治疗策略打下研究基础,以更好地达到防治肌腱损伤变性的目的。