The primary objective of present investigation is to introduce the novel aspects of convective mass condition and thermal radiation in the peristaltic transport of fluid. Magnetohydrodynamic(MHD) fluid was considered ...The primary objective of present investigation is to introduce the novel aspects of convective mass condition and thermal radiation in the peristaltic transport of fluid. Magnetohydrodynamic(MHD) fluid was considered in a symmetric channel. Heat and mass transfer characteristics were analyzed in the presence of Soret and Dufour effects, and the results were presented via two forms of thermal radiation. The temperature, concentration and pressure rise per wavelength were examined. It is observed that the velocity slip and magnetic field parameters have opposite effects on the pressure rise per wavelength. Temperature of fluid is a decreasing function of the radiation parameter. Further, the temperature of fluid decreases by increasing the heat transfer Biot number. It is notified that the heat transfer rate at the wall is a decreasing function of radiation parameter.展开更多
A straightforward technique has been developed to quickly determine the wall contour of super/hypersonic nozzles working at multiply Mach number which share a common throat section.Mach number distribution along the c...A straightforward technique has been developed to quickly determine the wall contour of super/hypersonic nozzles working at multiply Mach number which share a common throat section.Mach number distribution along the centerline of the nozzle is specified in advance and divided into two sections,both of which are described by the b-spline function.The first section is shared by different exit Mach number nozzles.The nozzle contour is determined by the method of characteristics plus boundary layer correction.An example of this design method is employed to illustrate the technique with a computational fluid dynamics calculation.The simulation results indicate that desired Mach numbers are obtained at the nozzle exit,and the good flow quality is attained for different nozzles within δMa/Ma<±0.56% in the flow core region.This technique improves the design precision of the converging-diverging nozzle,cancels waves completely,and achieves nozzles with multiple Mach number exiting which share a common throat section.展开更多
文摘The primary objective of present investigation is to introduce the novel aspects of convective mass condition and thermal radiation in the peristaltic transport of fluid. Magnetohydrodynamic(MHD) fluid was considered in a symmetric channel. Heat and mass transfer characteristics were analyzed in the presence of Soret and Dufour effects, and the results were presented via two forms of thermal radiation. The temperature, concentration and pressure rise per wavelength were examined. It is observed that the velocity slip and magnetic field parameters have opposite effects on the pressure rise per wavelength. Temperature of fluid is a decreasing function of the radiation parameter. Further, the temperature of fluid decreases by increasing the heat transfer Biot number. It is notified that the heat transfer rate at the wall is a decreasing function of radiation parameter.
基金Project(11072264) supported by the National Natural Science Foundation of China
文摘A straightforward technique has been developed to quickly determine the wall contour of super/hypersonic nozzles working at multiply Mach number which share a common throat section.Mach number distribution along the centerline of the nozzle is specified in advance and divided into two sections,both of which are described by the b-spline function.The first section is shared by different exit Mach number nozzles.The nozzle contour is determined by the method of characteristics plus boundary layer correction.An example of this design method is employed to illustrate the technique with a computational fluid dynamics calculation.The simulation results indicate that desired Mach numbers are obtained at the nozzle exit,and the good flow quality is attained for different nozzles within δMa/Ma<±0.56% in the flow core region.This technique improves the design precision of the converging-diverging nozzle,cancels waves completely,and achieves nozzles with multiple Mach number exiting which share a common throat section.