The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50...The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.展开更多
The hot deformation behavior of a KFC copper alloy was studied by compression deformation tests on Gleeble 1500 machine at strain rates ranging between 0.01?10 s?1 and deformation temperature of 650?850 ℃, and associ...The hot deformation behavior of a KFC copper alloy was studied by compression deformation tests on Gleeble 1500 machine at strain rates ranging between 0.01?10 s?1 and deformation temperature of 650?850 ℃, and associated structural changes were studied by observations of metallography and TEM. The results show that the true stress–true strain curves for a KFC copper alloy are characterized by multiple peaks or a single peak flow, and tend to a steady state at high strains. The peak stress can be represented by a Zener-Hollomon parameter in the hyperbolic-sine-type equation with the hot deformation activation energy Q of 289 kJ/mol. The dynamic recrystallization(DRX) occurs by bulging out of part serrated grain-boundary, and the dynamic recrystallization grain size is dependent sensitively on deformation temperature T and strain rate ε&, also a function of Z. The dynamic spherical Fe-rich precipitates and successive dynamic particles coarsening has been assumed to be responsible for flow softening at high strains, and this is more effective when samples deformed at low temperatures and higher strain rates.展开更多
An AZ61 alloy was subjected to hot compression at temperatures ranging from 523K to 673K, with strain rates of 0.0011s -1. Flow softening occurs at all temperatures and strain rates. There are peak and plateau s...An AZ61 alloy was subjected to hot compression at temperatures ranging from 523K to 673K, with strain rates of 0.0011s -1. Flow softening occurs at all temperatures and strain rates. There are peak and plateau stresses on flow curves. The initiation and evolution of dynamic recrystallization(DRX) were studied by the flow softening mechanism based on the flow curves and microstructural observations. A linear relationship was established between the logarithmic value of the critical strain for DRX initiation( lnε_c) and the logarithmic value of the Zener-Hollomon parameter (lnZ). The volume fraction of DRX grain (φ_d) is formulated as a function of the process parameters including strain rate, temperature, and strain. The calculated values of φ_d agree well with the values extracted from the flow curves. The size of DRX grain(d) was also formulated as a function of the Zener-Hollomon parameter. This study suggests that DRX behavior of AZ61 can be predicated from plastic process parameters.展开更多
The Al?4.10Cu?1.42Mg?0.57Mn?0.12Zr alloy was compressed to different strains at deformation temperature of 300 oC and strain rate of 10 s?1 on Gleeble?1500 system. The dynamic complex microstructures evolutions were i...The Al?4.10Cu?1.42Mg?0.57Mn?0.12Zr alloy was compressed to different strains at deformation temperature of 300 oC and strain rate of 10 s?1 on Gleeble?1500 system. The dynamic complex microstructures evolutions were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The true stress?true strain curves exhibited a peak stress at critical strain, after which the flow stresses decreased monotonically, showing a dynamic flow softening. As the strain increased, the dislocation tangled to cell structure and sub-grain structure, which indicated the occurrence of dynamic recovery during deformation. Dynamic precipitations ofS (Al2CuMg),θ (Al2Cu) and Al3Zr phase were accelerated and coarsened by deformation. ContinuousS phases precipitated in the Al matrix and discontinuousS phases were found to be nucleated near the Al3Zr phase and at the sub-grain boundary. The flow softening mechanism was resulted from the reduction of dislocation density which attributed to dynamic recovery and precipitates coarsening.展开更多
In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using G...In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.展开更多
Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been suffciently matured in the practical...Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been suffciently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in devel- oping machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and ef- ficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.展开更多
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of ChinaProject(2011BAG03B02)supported by National Key Technology R&D Program during the 12th Five-Year Plan Period,China
文摘The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.
文摘The hot deformation behavior of a KFC copper alloy was studied by compression deformation tests on Gleeble 1500 machine at strain rates ranging between 0.01?10 s?1 and deformation temperature of 650?850 ℃, and associated structural changes were studied by observations of metallography and TEM. The results show that the true stress–true strain curves for a KFC copper alloy are characterized by multiple peaks or a single peak flow, and tend to a steady state at high strains. The peak stress can be represented by a Zener-Hollomon parameter in the hyperbolic-sine-type equation with the hot deformation activation energy Q of 289 kJ/mol. The dynamic recrystallization(DRX) occurs by bulging out of part serrated grain-boundary, and the dynamic recrystallization grain size is dependent sensitively on deformation temperature T and strain rate ε&, also a function of Z. The dynamic spherical Fe-rich precipitates and successive dynamic particles coarsening has been assumed to be responsible for flow softening at high strains, and this is more effective when samples deformed at low temperatures and higher strain rates.
文摘An AZ61 alloy was subjected to hot compression at temperatures ranging from 523K to 673K, with strain rates of 0.0011s -1. Flow softening occurs at all temperatures and strain rates. There are peak and plateau stresses on flow curves. The initiation and evolution of dynamic recrystallization(DRX) were studied by the flow softening mechanism based on the flow curves and microstructural observations. A linear relationship was established between the logarithmic value of the critical strain for DRX initiation( lnε_c) and the logarithmic value of the Zener-Hollomon parameter (lnZ). The volume fraction of DRX grain (φ_d) is formulated as a function of the process parameters including strain rate, temperature, and strain. The calculated values of φ_d agree well with the values extracted from the flow curves. The size of DRX grain(d) was also formulated as a function of the Zener-Hollomon parameter. This study suggests that DRX behavior of AZ61 can be predicated from plastic process parameters.
基金Project(2009CB623704)supported by the National Basic Research(973)Program of ChinaProject(20130161110007)supported by the Doctoral Program of the Ministry of Education,ChinaProject(CX2013B128)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The Al?4.10Cu?1.42Mg?0.57Mn?0.12Zr alloy was compressed to different strains at deformation temperature of 300 oC and strain rate of 10 s?1 on Gleeble?1500 system. The dynamic complex microstructures evolutions were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The true stress?true strain curves exhibited a peak stress at critical strain, after which the flow stresses decreased monotonically, showing a dynamic flow softening. As the strain increased, the dislocation tangled to cell structure and sub-grain structure, which indicated the occurrence of dynamic recovery during deformation. Dynamic precipitations ofS (Al2CuMg),θ (Al2Cu) and Al3Zr phase were accelerated and coarsened by deformation. ContinuousS phases precipitated in the Al matrix and discontinuousS phases were found to be nucleated near the Al3Zr phase and at the sub-grain boundary. The flow softening mechanism was resulted from the reduction of dislocation density which attributed to dynamic recovery and precipitates coarsening.
基金Project(2019zzts525)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(U1837207,U1637601)supported by the National Natural Science Foundation of China
文摘In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values.
文摘Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been suffciently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in devel- oping machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and ef- ficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.