The experimental results of processing the solutions with trace suspended micro particles by a dynamic rotary vane filter press at production site are presented in this paper. Furthermore t...The experimental results of processing the solutions with trace suspended micro particles by a dynamic rotary vane filter press at production site are presented in this paper. Furthermore the effects of the conditions in the productive operation and the method of processing are summarized.展开更多
The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for mo...The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.展开更多
文摘The experimental results of processing the solutions with trace suspended micro particles by a dynamic rotary vane filter press at production site are presented in this paper. Furthermore the effects of the conditions in the productive operation and the method of processing are summarized.
文摘The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.