传统基于地球物理模型函数(geophysical model function,GMF)的全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)海面风速反演存在特征提取准确度低、模型复杂度高等问题。针对上述问题,提出了一种...传统基于地球物理模型函数(geophysical model function,GMF)的全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)海面风速反演存在特征提取准确度低、模型复杂度高等问题。针对上述问题,提出了一种基于卷积神经网络的GNSS-R海面风速反演方法。通过构建卷积模块自动提取时延-多普勒映射图像(delay-Doppler map,DDM)中的观测特征,特征融合模块将提取的特征与辅助特征关联,全连接模块将上述特征向量逐级映射到海面风速。以“捕风一号”卫星观测数据为例验证了上述方法的有效性,较传统GMF方法,风速反演精度在均方根误差(root mean square error,RMSE)和平均偏差(mean bias error,MBE)上分别降低了0.51 m/s和0.19 m/s,反演效果分别提升了21%和16%。试验结果表明:该方法能够有针对性地自动提取DDM特征,有效提高特征提取的精度,同时显著降低模型的复杂度。本研究为同类卫星各种地表参数反演提供了新思路。展开更多
文摘传统基于地球物理模型函数(geophysical model function,GMF)的全球导航卫星系统反射测量(global navigation satellite system reflectometry,GNSS-R)海面风速反演存在特征提取准确度低、模型复杂度高等问题。针对上述问题,提出了一种基于卷积神经网络的GNSS-R海面风速反演方法。通过构建卷积模块自动提取时延-多普勒映射图像(delay-Doppler map,DDM)中的观测特征,特征融合模块将提取的特征与辅助特征关联,全连接模块将上述特征向量逐级映射到海面风速。以“捕风一号”卫星观测数据为例验证了上述方法的有效性,较传统GMF方法,风速反演精度在均方根误差(root mean square error,RMSE)和平均偏差(mean bias error,MBE)上分别降低了0.51 m/s和0.19 m/s,反演效果分别提升了21%和16%。试验结果表明:该方法能够有针对性地自动提取DDM特征,有效提高特征提取的精度,同时显著降低模型的复杂度。本研究为同类卫星各种地表参数反演提供了新思路。