本文通过讨论了无信息变量消除法(uninformative variables elimination,UVE)的原理,并用此算法对玉米的近红外光谱数据进行波长变量选择,再使用偏最小二乘法(partial least squares,PLS)建立模型。结果表明,与使用全谱数据建立的模型...本文通过讨论了无信息变量消除法(uninformative variables elimination,UVE)的原理,并用此算法对玉米的近红外光谱数据进行波长变量选择,再使用偏最小二乘法(partial least squares,PLS)建立模型。结果表明,与使用全谱数据建立的模型相比较,筛选变量后建立的校正模型不仅简化了,而且增强了预测能力。展开更多
文摘本文通过讨论了无信息变量消除法(uninformative variables elimination,UVE)的原理,并用此算法对玉米的近红外光谱数据进行波长变量选择,再使用偏最小二乘法(partial least squares,PLS)建立模型。结果表明,与使用全谱数据建立的模型相比较,筛选变量后建立的校正模型不仅简化了,而且增强了预测能力。