In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirre...Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.展开更多
In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the bla...In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment CM, coefficients of performance Cp and coefficient of torque Cr, etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on tm'bine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum Ce and peak power at smaller revolution per minute N and tip sped ratio 2.展开更多
Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the tech...Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.展开更多
This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are describ...This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are described with RNG k-e turbulence model and the numerical simulation is carded out with Fluent software. The influence of sail's structure is analyzed including plate, separation type and height/width ratio. The lift coefficients and drag coefficients of the simulated turbine sail are calculated under different rotation angles, suction intensity and separation plate position. The calculated results are compared with the wind tunnel experimental results, which verifies the feasibility of the numerical results and establishes a foundation for the optimal design of turbine sails.展开更多
The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging t...The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.展开更多
The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (...The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).展开更多
Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbin...Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbine blade. Numerical simulation of the directional solidification process is an effective way to investigate the grain's growth and morphology,and hence to optimize the process. In this paper,a mathematical model was presented to study the directional solidified microstructures at different withdrawal rates. Ray-tracing method was applied to calculate the temperature variation of the blade. By using a Modified Cellular Automation(MCA) method and a simple linear interpolation method,the mushy zone and the microstructure evolution were studied in detail. Experimental validations were carried out at different withdrawal rates. The calculated cooling curves and microstructure agreed well with those experimental. It is indicated that the withdrawal rate affects the temperature distribution and growth rate of the grain directly,which determines the final size and morphology of the columnar grain. A moderate withdrawal rate can lead to high quality DS turbine blades for industrial application.展开更多
The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space...The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space turbine blisk featuring complex deformation of blades and high eigenfrequency(>40kHz)is performed.The simulations are based on unsteady Reynolds Averaged Navier Stokes computations linearized in the frequency domain and consist in the superposition of an unsteady linear(in time)pressure field,generated by a harmonic perturbation,upon a steady nonlinear(in space)flow.The aerodynamic damping coefficient is calculated over a range of nodal diameters,and the blades are predicted aeroelastically stable.However,violent changes occur and are rather critical since sudden and large deviations in stability appear.In that context,the nature of the waves propagating from the cascade are evaluated.Such an approach provides fundamental knowledge about the perturbations which can either propagate to the far-field(cut-on mode)or decay(cut-off mode).It is expected that the ability of the flow to damp or to amplify the blade motion is strongly affected by the way unsteady perturbations are transferred from the cascade to the far-field.The nature of the waves are first assessed from the aforementioned linearized results,then they are evaluated analytically and finally compared.A good agreement is found despite the strong assumptions of the analytical model.The results show a clear correlation between the cut-on/cut-off conditions and stability.The least stable configuration corresponds to cut-off mode at the inlet and no wave at the outlet.Without outgoing waves from the cascade,the blade is prone to be less stable:the energy from the blades vibration is necessarily dissipated or sent out by the cascade.展开更多
This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the...This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic (M2 = 0.8) and at transonic (M2 = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.展开更多
Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have be...Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have been suggested,the Wells turbine has gained particular attention due to its simplicity and reliability.The majority of available studies concentrate on the steady operation of the Wells turbine,while only few analyze its performance under an unsteady and bi-directional air flow,as determined by the presence of the OWC system.In this work,experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared,at different non-dimensional piston frequencies.The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions,with particular attention to the behavior of the flow upstream and downstream of the rotor,flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.展开更多
The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with ...The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with the same profile,but uniform and nonuniform vane stagger angle respectively,were conducted in both steady and unsteady methods.The results indicate that certain changes in the detailed flow field of the turbine occur when the stagger angles are nonuniform,further,the blade loading distribution of the vane and rotor become markedly different from that in uniform vane stagger angle situation.Then these consequences caused by nonuniformity mentioned above enhance the unsteadiness of the flow,finally,the aerodynamic performance changes dramatically.It also shows that,compared with steady simulation,the unsteady numerical simulation is necessary in this investigation.展开更多
This paper describes the numerical simulation of three-dimensional viscous flows in fir-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax t...This paper describes the numerical simulation of three-dimensional viscous flows in fir-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax turbulence model and multi-grid convergence acceleration algorithm are used for the simulation. The influences of coolant ejection on the main flow are accounted by volumetric coolant source terms. Numerical results for a four-stage turbine are presented and discussed.展开更多
The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole ...The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole with diameter of 0.004 m, angled 36°and 28° tangentially to the suction side and pressure side in streamwise respectively, was set in the middle span of the rotor blade. Simulations are done at three different rotating numbers of 0.0239, 0.0265 and 0.0280 with the blowing ratio varying from 0.5 to 2.0. The effects of mainstream Reynolds number and density ratio are also compared. Results show that increasing blowing ratio can increase the heat transfer coefficient ratio on the pressure side, but the rule is parabola on the suction side. Besides, increasing rotating number and Reynolds number is positive while increasing density ratio is negative to the heat transfer on both the pressure side and the suction side.展开更多
Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equ...Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.展开更多
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
基金the National Natural Science Foundation of China (No. 20106016 and No. 20236050).
文摘Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.
基金financially supported by National "863" Program (Grant No.2007AA05Z450, No. 200805040)National S&T Program (No.2008BAA15B04)+2 种基金2010 National Ocean Special Funds(No.ZJME2010GC01, No. ZJME2010CY01, No.GHME2010GC02)supported by the Fundamental Research Funds of the Universities(No.HEUCF130105)supported by "111 project" foundation(No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment CM, coefficients of performance Cp and coefficient of torque Cr, etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on tm'bine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum Ce and peak power at smaller revolution per minute N and tip sped ratio 2.
基金Sponsored by the National Natural Science Foundation of China (Grant No.5047028 and 50476017)
文摘Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.
文摘This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are described with RNG k-e turbulence model and the numerical simulation is carded out with Fluent software. The influence of sail's structure is analyzed including plate, separation type and height/width ratio. The lift coefficients and drag coefficients of the simulated turbine sail are calculated under different rotation angles, suction intensity and separation plate position. The calculated results are compared with the wind tunnel experimental results, which verifies the feasibility of the numerical results and establishes a foundation for the optimal design of turbine sails.
基金The support of the Italian Ministry of the University and Scientific Research(MIUR)under the PRIN project number 2007R3AXLH is greatly acknowledged
文摘The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.
基金supported by the National Natural Science Foundation of China (Nos. 51209060 and 51106034)the ‘111’ Project Foundation from Ministry of Education and State Administration of Foreign Experts Affairs (No. B07019), Chinathe National Special Foundation for Ocean Energy (No. GHME2010CY01)
文摘The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).
基金supported by the National Basic Research Program of China (Grant Nos. 2005CB724105, 2011CB706801)National Natural Science Foundation of China (Grant No. 10477010)+1 种基金National High Technology Research and Development Program of China (Grant No. 2007AA04Z141)Important National Science & Technology Specific Projects (Grant Nos. 2009ZX04006-041, 2011ZX04014-052)
文摘Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbine blade. Numerical simulation of the directional solidification process is an effective way to investigate the grain's growth and morphology,and hence to optimize the process. In this paper,a mathematical model was presented to study the directional solidified microstructures at different withdrawal rates. Ray-tracing method was applied to calculate the temperature variation of the blade. By using a Modified Cellular Automation(MCA) method and a simple linear interpolation method,the mushy zone and the microstructure evolution were studied in detail. Experimental validations were carried out at different withdrawal rates. The calculated cooling curves and microstructure agreed well with those experimental. It is indicated that the withdrawal rate affects the temperature distribution and growth rate of the grain directly,which determines the final size and morphology of the columnar grain. A moderate withdrawal rate can lead to high quality DS turbine blades for industrial application.
基金the Centre National d'Etudes Spatiales (CNES) and Snecma for their financial supportthe Centre Informatique National de l'Enseignement Supérieur (CINES) for the computational resources,and the Agence Nationale de la Recherche(ANR) for sponsoring the project ANR-08-2009 CapCAO (parametrization-aided optimized aeroelastic design)
文摘The so-called blisks,i.e.integrally bladed disks,are characterized by very low viscous material damping and make the flutter prediction much more critical.In that framework,a two-dimensional numerical study of a space turbine blisk featuring complex deformation of blades and high eigenfrequency(>40kHz)is performed.The simulations are based on unsteady Reynolds Averaged Navier Stokes computations linearized in the frequency domain and consist in the superposition of an unsteady linear(in time)pressure field,generated by a harmonic perturbation,upon a steady nonlinear(in space)flow.The aerodynamic damping coefficient is calculated over a range of nodal diameters,and the blades are predicted aeroelastically stable.However,violent changes occur and are rather critical since sudden and large deviations in stability appear.In that context,the nature of the waves propagating from the cascade are evaluated.Such an approach provides fundamental knowledge about the perturbations which can either propagate to the far-field(cut-on mode)or decay(cut-off mode).It is expected that the ability of the flow to damp or to amplify the blade motion is strongly affected by the way unsteady perturbations are transferred from the cascade to the far-field.The nature of the waves are first assessed from the aforementioned linearized results,then they are evaluated analytically and finally compared.A good agreement is found despite the strong assumptions of the analytical model.The results show a clear correlation between the cut-on/cut-off conditions and stability.The least stable configuration corresponds to cut-off mode at the inlet and no wave at the outlet.Without outgoing waves from the cascade,the blade is prone to be less stable:the energy from the blades vibration is necessarily dissipated or sent out by the cascade.
基金supported by the Czech Science Foundation under the grant No. GAP 101/10/1329
文摘This paper is concerned with experimental and numerical research on 3D flow past prismatic turbine cascade SE1050 (known in QNET network as open test case SE1050). The primary goal was to assess the influence of the inlet velocity profile on the flow structures in the interblade channel and on the flow field parameters at the cascade exit and to compare these findings to results of numerical simulations. Investigations of 3D flow past the cascade with non-uniform inlet velocity profile were carried out both experimentally and numerically at subsonic (M2 = 0.8) and at transonic (M2 = 1.2) regime at design angle of incidence. Experimental data was obtained using a traversing device with a five-hole conical probe. Numerically, the 3D flow was simulated by open source code OpenFOAM and in-house code. Analyses of experimental data and CFD simulations have revealed the development of distinctive vortex structures resulting from non-uniform inlet velocity profile. Origin of these structures results in increased loss of kinetic energy and spanwise shift of kinetic energy loss coefficient distribution. Differences found between the subsonic and the transonic case confirm earlier findings available in the literature. Results of CFD and experiments agree reasonably well.
文摘Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have been suggested,the Wells turbine has gained particular attention due to its simplicity and reliability.The majority of available studies concentrate on the steady operation of the Wells turbine,while only few analyze its performance under an unsteady and bi-directional air flow,as determined by the presence of the OWC system.In this work,experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared,at different non-dimensional piston frequencies.The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions,with particular attention to the behavior of the flow upstream and downstream of the rotor,flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.
基金supported by National Nature Science Foundation of China under Grant Number 50776003the Innovation Foundation of BUAA for PhD Graduates
文摘The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with the same profile,but uniform and nonuniform vane stagger angle respectively,were conducted in both steady and unsteady methods.The results indicate that certain changes in the detailed flow field of the turbine occur when the stagger angles are nonuniform,further,the blade loading distribution of the vane and rotor become markedly different from that in uniform vane stagger angle situation.Then these consequences caused by nonuniformity mentioned above enhance the unsteadiness of the flow,finally,the aerodynamic performance changes dramatically.It also shows that,compared with steady simulation,the unsteady numerical simulation is necessary in this investigation.
基金the National High Technology Research and Development Program of China through grant number 2002AA503010
文摘This paper describes the numerical simulation of three-dimensional viscous flows in fir-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax turbulence model and multi-grid convergence acceleration algorithm are used for the simulation. The influences of coolant ejection on the main flow are accounted by volumetric coolant source terms. Numerical results for a four-stage turbine are presented and discussed.
基金supported by the National Natural Science Foundation of China(Grant No 51106156)
文摘The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole with diameter of 0.004 m, angled 36°and 28° tangentially to the suction side and pressure side in streamwise respectively, was set in the middle span of the rotor blade. Simulations are done at three different rotating numbers of 0.0239, 0.0265 and 0.0280 with the blowing ratio varying from 0.5 to 2.0. The effects of mainstream Reynolds number and density ratio are also compared. Results show that increasing blowing ratio can increase the heat transfer coefficient ratio on the pressure side, but the rule is parabola on the suction side. Besides, increasing rotating number and Reynolds number is positive while increasing density ratio is negative to the heat transfer on both the pressure side and the suction side.
文摘Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.