The subsection linear torsional model of hydrodynamic torque converter was established and further simplified. According to the identification theory, the frequency characteristic was achieved with the Matlab/ Ident ...The subsection linear torsional model of hydrodynamic torque converter was established and further simplified. According to the identification theory, the frequency characteristic was achieved with the Matlab/ Ident toolbox. Then parametric model was established by adopting the subsection linearization method, and the damp value was estimated. The curve and function of damp changing with speed ratio was also established by fitting. In order to validate the identification results, the experimental output was compared with the output of the model in which torque was chosen as input signal and speed as output signal in Matlab/Ident toolbox. It was shown that model output is in good agreement with experimental output.展开更多
Both a free volume approach for Helmholtz free energy and a theoretically-based fitted formula for radial distribution function (rdf) of hard sphere solid are employed to describe the Helmholtz free energy of Lennard-...Both a free volume approach for Helmholtz free energy and a theoretically-based fitted formula for radial distribution function (rdf) of hard sphere solid are employed to describe the Helmholtz free energy of Lennard-Jones solid in the framework of the first order thermodynamic perturbation theory, which also is employed for the uniform LennardJones fluid. The dividing of the Lennard-Jones potential follows from the WCA prescription, but the specification of the equivalent hard sphere diameter is determined by a simple iteration procedure devised originally for liquid state, but extended to solid state in the present study. Two hundred sheiks are used in the rdf to get an accurate perturbation term.The present approach is very accurate for the description of excess Helmholtz free energy of LJ solid, but shows some deviation from the simulation for excess Helmholtz free energy of uniform LJ fluid when the reduced temperature kT/ε is higher then 5. The present approach is satisfactory for description of solid-liquid phase transition of the Lennard-Jones model.展开更多
文摘The subsection linear torsional model of hydrodynamic torque converter was established and further simplified. According to the identification theory, the frequency characteristic was achieved with the Matlab/ Ident toolbox. Then parametric model was established by adopting the subsection linearization method, and the damp value was estimated. The curve and function of damp changing with speed ratio was also established by fitting. In order to validate the identification results, the experimental output was compared with the output of the model in which torque was chosen as input signal and speed as output signal in Matlab/Ident toolbox. It was shown that model output is in good agreement with experimental output.
文摘Both a free volume approach for Helmholtz free energy and a theoretically-based fitted formula for radial distribution function (rdf) of hard sphere solid are employed to describe the Helmholtz free energy of Lennard-Jones solid in the framework of the first order thermodynamic perturbation theory, which also is employed for the uniform LennardJones fluid. The dividing of the Lennard-Jones potential follows from the WCA prescription, but the specification of the equivalent hard sphere diameter is determined by a simple iteration procedure devised originally for liquid state, but extended to solid state in the present study. Two hundred sheiks are used in the rdf to get an accurate perturbation term.The present approach is very accurate for the description of excess Helmholtz free energy of LJ solid, but shows some deviation from the simulation for excess Helmholtz free energy of uniform LJ fluid when the reduced temperature kT/ε is higher then 5. The present approach is satisfactory for description of solid-liquid phase transition of the Lennard-Jones model.