针对频分双工大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统中信道状态信息(Channel State Information,CSI)反馈方法复杂度高、精度低和开销大的问题,本文提出了一种基于深度学习的低复杂度CSI反馈方法.该方法通...针对频分双工大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统中信道状态信息(Channel State Information,CSI)反馈方法复杂度高、精度低和开销大的问题,本文提出了一种基于深度学习的低复杂度CSI反馈方法.该方法通过端到端的方式构建了一种从用户设备编码器到基站解码器相结合的网络结构.编解码器利用连续的平均池化层和上采样层完成特征图的降维和升维,同时引入深度可分离卷积神经网络减少网络参数量.在解码器部分,本文利用残差网络构建连续的拥有大卷积核的残差块逼近原始CSI矩阵.仿真结果表明,和已有的代表性方法相比,本文所提方法在归一化均方误差上有2 dB~5 dB的性能提升,在余弦相似度上也有2%~5%的提升,并且在时间复杂度和空间复杂度上均有更好的表现.展开更多