为解决双目视觉三维重建深度图边缘不连续的问题,提出基于加权最小二乘(weighted least squares,WLS)滤波的深度图优化,经双目标定、畸变矫正、立体校正、立体匹配建立三维深度图,加入WLS滤波,通过调整正则项更改约束条件,对梯度较大的...为解决双目视觉三维重建深度图边缘不连续的问题,提出基于加权最小二乘(weighted least squares,WLS)滤波的深度图优化,经双目标定、畸变矫正、立体校正、立体匹配建立三维深度图,加入WLS滤波,通过调整正则项更改约束条件,对梯度较大的区域减少约束,保留图像边缘,对梯度较小的区域平滑处理,去除噪声,采用峰值信噪比、结构相似性指数、平均绝对误差3个参数评价图像质量。评价结果表明:与半全局匹配算法相比,此算法的峰值信噪比增大1.849 dB,图像失真更少,质量更高;结构相似性指数增大0.4151,与原图结构相似性更强;平均绝对误差减小21.5422,还原度更高。重建的深度图视觉效果更好,改善立体匹配不连续的问题,减小匹配误差,使视差图质量更高。展开更多
点云分割在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域具有重要意义。为提高对激光雷达采集点云分割的准确率,提出了一种基于深度图的道路场景三维点云分割优化方法。将点云数据转化为深度图,建立三维点云与深度图之间的投影关系...点云分割在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域具有重要意义。为提高对激光雷达采集点云分割的准确率,提出了一种基于深度图的道路场景三维点云分割优化方法。将点云数据转化为深度图,建立三维点云与深度图之间的投影关系,利用相邻激光雷达扫描线的角度阈值进行地物分割,再对分割后的地上物体进行分割,去除噪声点。通过使用KNN(K-Nearest Neighbor)插值优化算法对分割结果进一步优化,较好地克服了过分割问题,提高了点云分割的准确率。实验结果表明,该方法的运行时间达到86 ms,相较传统深度图的自适应DBSCAN(Density-Based Spatial Clustering of Applications with Noise)方法准确率提升了5%,达到90.5%。展开更多
文摘针对现有的深度获取方式存在数据缺失、分辨率低等问题,提出一种基于软聚类的深度图增强方法,称为软聚类求解器.该方法利用软聚类的强边缘保持特性提高深度图增强的精度.将软聚类仿射矩阵和加权最小二乘模型有机结合,构建了软聚类求解器中的置信加权最小二乘模型,提出了基于迭代的求解方法.为评估所提出的方法,在多项深度图增强任务上进行试验,包括深度图补洞、深度图超分辨率和深度图纠正,评价指标包含了峰值信噪比(PSNR)、结构相似度(SSIM)、均方根差(RMSE)和运行效率.结果表明:文中方法在深度图补洞任务中的平均PSNR达到了42.28,平均SSIM达到了98.83%;在深度图超分辨率、深度图纠正任务中的平均RMSE达到了8.96、 2.36.文中方法处理1张分辨率为2 048×1 024像素的图像仅需5.03 s.
文摘为解决双目视觉三维重建深度图边缘不连续的问题,提出基于加权最小二乘(weighted least squares,WLS)滤波的深度图优化,经双目标定、畸变矫正、立体校正、立体匹配建立三维深度图,加入WLS滤波,通过调整正则项更改约束条件,对梯度较大的区域减少约束,保留图像边缘,对梯度较小的区域平滑处理,去除噪声,采用峰值信噪比、结构相似性指数、平均绝对误差3个参数评价图像质量。评价结果表明:与半全局匹配算法相比,此算法的峰值信噪比增大1.849 dB,图像失真更少,质量更高;结构相似性指数增大0.4151,与原图结构相似性更强;平均绝对误差减小21.5422,还原度更高。重建的深度图视觉效果更好,改善立体匹配不连续的问题,减小匹配误差,使视差图质量更高。
文摘点云分割在计算机视觉、智能驾驶、遥感测绘、智慧城市等领域具有重要意义。为提高对激光雷达采集点云分割的准确率,提出了一种基于深度图的道路场景三维点云分割优化方法。将点云数据转化为深度图,建立三维点云与深度图之间的投影关系,利用相邻激光雷达扫描线的角度阈值进行地物分割,再对分割后的地上物体进行分割,去除噪声点。通过使用KNN(K-Nearest Neighbor)插值优化算法对分割结果进一步优化,较好地克服了过分割问题,提高了点云分割的准确率。实验结果表明,该方法的运行时间达到86 ms,相较传统深度图的自适应DBSCAN(Density-Based Spatial Clustering of Applications with Noise)方法准确率提升了5%,达到90.5%。