期刊文献+
共找到752篇文章
< 1 2 38 >
每页显示 20 50 100
基于变分模态分解和深度多核极限学习机的轴承故障分类
1
作者 邵磊 祝晓晨 +2 位作者 李季 刘宏利 孙文涛 《天津理工大学学报》 2024年第5期32-39,共8页
针对轴承故障分类任务中核极限学习机(kernel extreme learning machine,KELM)超参数选择困难、模型运算速度慢的问题,提出一种基于深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的轴承故障分类方法,利用... 针对轴承故障分类任务中核极限学习机(kernel extreme learning machine,KELM)超参数选择困难、模型运算速度慢的问题,提出一种基于深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的轴承故障分类方法,利用天鹰优化算法(aquila optimization algorithm,AO)实现该模型超参数的优化选择。首先,以峰度指数作为鲸鱼优化算法(whale optimization algorithm,WOA)的适应度函数,对变分模态分解(variational mode decomposition,VMD)的相关参数寻优,利用最优参数组合进行VMD分解,得到k个模态分量并求其希尔伯特-黄变换(Hilbert-Huang Transform,HHT)边际谱作为特征数据,将其作为天鹰优化DHKELM分类器的输入,对不同状态的轴承故障进行识别。实验结果表明,KELM,DHKELM,天鹰优化DHKELM三种分类模型故障识别准确率分别为94%,96.67%,98.34%,运算时间分别为0.0631,0.0360,0.0175 s,证明AO-DHKELM识别准确率和运算速度均具有明显优势。 展开更多
关键词 滚动轴承 深度混合核极限学习机 天鹰优化算法 变分模态分解 边际谱
下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测
2
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合极限学习 小波包变换 超参数优化
下载PDF
基于差分进化改进混合核极限学习机的指纹定位
3
作者 韦嘉恒 刘伟 +2 位作者 李卓 刘博 王智豪 《中国科技论文》 CAS 2024年第5期600-606,共7页
针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动... 针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动态控制参数法避免差分进化算法陷入局部最优,然后通过改进差分进化算法自适应调整混合核极限学习机的参数,提高训练效率。在线阶段,利用混合核函数提高极限学习机的学习性能和泛化性能,并引入L1惩罚函数防止过拟合。其泛化能力相较于单一核极限学习机提升明显。该方法有92%的测试点定位误差小于0.5 m,平均误差相较于加权K近邻法(weighted Knearest neighbor,WKNN)降低了32.6%。 展开更多
关键词 混合极限学习 LOGISTIC混沌映射 差分进化算法 指纹定位
下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:2
4
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合极限学习 超参数优化
下载PDF
基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱预测研究
5
作者 任宝峰 祁卫国 +2 位作者 肖占云 撒兴涛 贾然 《承德石油高等专科学校学报》 CAS 2024年第3期9-13,共5页
为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化... 为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化,使其不仅有良好的局部搜索能力,同时也加强了全局搜索能力。将该方法应用于某品牌的真伪卷烟预测,试验结果表明:该模型拥有更好的预测精度,为真伪卷烟拉曼光谱预测提供了一种新思路。 展开更多
关键词 卷烟 真伪鉴别 拉曼光谱 混合极限学习 贝叶斯优化
下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别
6
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习 小波函数 烟叶烘烤 特征提取 识别
下载PDF
基于改进灰狼优化核极限学习机的疾病诊断模型
7
作者 魏瑞芳 《科技通报》 2024年第3期47-52,共6页
为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型。通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个... 为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型。通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个疾病数据集上进行实验验证。实验结果显示:提出的模型在准确率、敏感性、特异性等评价指标方面相对于其他混合模型高出约1%~2%,带特征选择的优化模型相对于没有特征选择的模型在评价指标上也高出约1%~2%。结果表明提出的模型具有一定的优势。 展开更多
关键词 灰狼优化算法 极限学习 疾病诊断 特征选择 参数优化
下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:1
8
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布熵 极限学习 算术优化算法 水电 故障诊断
下载PDF
基于深度学习与改进极限学习机的包装机轴承故障诊断 被引量:1
9
作者 汝欣 孟金鑫 +1 位作者 李建强 彭来湖 《软件工程》 2024年第4期43-48,共6页
针对包装机故障信号受噪声影响且样本稀少导致传统的诊断方法不能满足实际场景应用要求的问题,提出一种新的轴承故障诊断方法。首先,利用连续小波变换(Continue Wavelet Transform, CWT)将振动信号转换为二维图像。其次,将其输入深度网... 针对包装机故障信号受噪声影响且样本稀少导致传统的诊断方法不能满足实际场景应用要求的问题,提出一种新的轴承故障诊断方法。首先,利用连续小波变换(Continue Wavelet Transform, CWT)将振动信号转换为二维图像。其次,将其输入深度网络模型进行训练。再次,利用极限学习机(Extreme Learning Machine, ELM)进行故障分类。最后,通过麻雀搜索算法(Sparrow Search Algorithm, SSA)对ELM进行优化。试验结果显示,在强噪声干扰且少样本训练的情况下,所提方法的准确率仍能够达到98.91%,并且模型在不同的轴承数据集中的准确率均达到98.92%,证明所提方法具有一定的实用价值。 展开更多
关键词 故障诊断 深度学习 特征提取 极限学习
下载PDF
基于改进深度极限学习机的光伏扩容用户识别方法 被引量:1
10
作者 汤渊 吴裕宙 +2 位作者 苏盛 刘韵艺 王耀龙 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期59-68,共10页
为准确识别违规的分布式光伏扩容骗补用户,提出一种基于改进深度极限学习机的光伏扩容用户识别方法。首先利用同地区光伏发电出力具有相似性的特点,通过余弦相似度对参考电站和待测站点进行预处理;然后应用麻雀搜索算法SSA(sparrow sear... 为准确识别违规的分布式光伏扩容骗补用户,提出一种基于改进深度极限学习机的光伏扩容用户识别方法。首先利用同地区光伏发电出力具有相似性的特点,通过余弦相似度对参考电站和待测站点进行预处理;然后应用麻雀搜索算法SSA(sparrow search algorithm)对深度极限学习机DELM(deep extreme learning machine)的权值参数优化,用预处理的数据集训练SSA-DELM拟合模型,并根据光伏扩容的特性计算扩容系数。实验结果验证了所提方法对分布式光伏违规扩容用户识别的有效性。 展开更多
关键词 分布式光伏 违规扩容 深度极限学习 麻雀搜索算法
下载PDF
高光谱结合哈里斯鹰优化核极限学习机鉴别化橘红胎切片年份
11
作者 谢百亨 马晋芳 +5 位作者 周泳欣 韩雪勤 陈嘉泽 朱思祁 杨懋勋 黄富荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1494-1500,共7页
化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化... 化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化橘红胎切片样本400~1000 nm的高光谱图像。首先采用主成分分析法(PCA)分析化橘红胎切片的原始反射光谱,然后分别采用Savitzky-Golay平滑(S-G平滑)、多元散射校正(MSC)、标准正态变量交换(SNV)对样本光谱进行预处理并建立核极限学习机(KELM)模型;发现经SNV处理的样本光谱的判别准确率最高,训练集达到99.24%,测试集95.56%;进一步用竞争性自适应重加权算法(CARS)、蒙特卡洛无信息变量消除法(MCUVE)对样本光谱进行特征波长的选择;最后,采用KELM建立判别模型,同时使用哈里斯鹰算法(HHO)优化KELM参数选择并比较建模效果。结果表明:基于HHO-KELM的判别效果相较KELM有0.76%~4.44%的提升,通过MCUVE筛选所得特征波段信息冗余明显减少且精度提升,训练集和测试集最佳准确率均可达100%,故采用高光谱成像技术可以实现对不同年份的化橘红胎切片进行无损鉴别。 展开更多
关键词 化橘红胎 高光谱成像 特征波长 极限学习
下载PDF
基于核极限学习机的多标签数据流半监督在线分类方法
12
作者 王雨晨 邱士远 +1 位作者 李培培 胡学钢 《模式识别与人工智能》 EI CSCD 北大核心 2024年第8期741-754,共14页
实际应用中涌现的大量流数据具有高速到达、海量、动态变化等特点,同时,这些数据流常含有多个标签且只有少量数据被标记,从而带来多标签数据环境下的概念漂移与标签缺失问题.为此,文中提出基于核极限学习机的多标签数据流半监督在线分... 实际应用中涌现的大量流数据具有高速到达、海量、动态变化等特点,同时,这些数据流常含有多个标签且只有少量数据被标记,从而带来多标签数据环境下的概念漂移与标签缺失问题.为此,文中提出基于核极限学习机的多标签数据流半监督在线分类方法.首先,针对多标签数据流的标签缺失问题,根据滑动窗口将数据流划分为k块,对每块数据构造特征相似性矩阵和标签相似性矩阵,并加入核极限学习机的训练中.同时为了适应流数据的特点,设计增量式更新机制,构建半监督在线核极限学习机.然后,为了适应数据流中的概念漂移问题,采用基于时间戳丢弃更新的机制,预先设定数据规模,当数据到达指定规模后,丢弃最旧的无标签数据,将新的数据加入更新.最后,在10个多标签数据集上的实验表明,文中方法对标签缺失和概念漂移问题具有较强的适应能力,并能保持较优的分类效果. 展开更多
关键词 数据流分类 半监督分类 多标签分类 极限学习 概念漂移
下载PDF
基于北方苍鹰优化核极限学习机的玉米品种鉴别研究
13
作者 倪金 索丽敏 +1 位作者 刘海龙 赵蕊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1584-1590,共7页
玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该... 玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该研究基于近红外光谱技术结合核极限学习机(KELM)针对玉米品种分类问题构建鉴别模型,利用甜糯黄玉米、甜妃、昌甜、金色超人、香甜5号五种玉米种子,每种取(13±0.5)g作为一份样品,共计126个样品作为研究对象,对采集的近红外光谱数据进行标准正态变量变换(SNV)处理后采用竞争性自适应重加权采样法(CARS)对数据集进行降维。按照5∶1的比例将样本随机分为训练集和测试集,探讨北方苍鹰优化算法(NGO)对KELM模型性能的影响。分别使用NGO算法、粒子群算法(PSO)和灰狼算法(GWO)对KELM模型的两个重要参正则化参数C和高斯核函数γ进行寻优,选择五折交叉验证识别准确率最高时对应的C和γ作为建模参数,建立KELM分类模型。将各算法寻优后建立的KELM模型性能进行对比。实验发现,通过NGO算法寻优后建立的KELM模型性能高于其他两种算法优化的KELM模型,测试集识别准确率可达100%。在CARS降维的基础上分别建立CARS-NGO-KELM、CARS-PSO-KELM和CARS-GWO-KELM模型,结果表明,在面对降维后的数据时NGO算法仍能表现较好的性能,其测试集准确率和F 1值均达到了100%。为了验证样本数量对模型的影响,使用各品种样品数量同步后的共计90个样品重新训练KELM模型。结果表明,在同步各类样品数量后,各个模型在训练集和测试集上的表现均有提升。该研究在近红外光谱的基础上引入多种优化算法构建核极限学习机模型并将识别准确率提升至100%,实现了对玉米种子快速、无损、准确的品种鉴别,研究结果为玉米品种快速鉴别提供了一种新方法,同时也对监管部门具有一定的指导意义。 展开更多
关键词 近红外光谱 玉米 北方苍鹰 竞争性自适应加权采样 极限学习
下载PDF
基于混合深度学习的压气机喘振快速诊断及自抗扰控制方法
14
作者 孙守泰 汤冰 +1 位作者 薛亚丽 孙立 《中国舰船研究》 CSCD 北大核心 2024年第2期187-196,共10页
[目的]为了提升压气机设备安全、稳定运行的水平,提出一种基于混合深度学习参数辨识的喘振状态快速诊断方法,以及一种用于实现压气机退喘的自抗扰控制策略。[方法]首先,采用长短期记忆神经网络(LSTM)处理压气机参数辨识输入输出数据的... [目的]为了提升压气机设备安全、稳定运行的水平,提出一种基于混合深度学习参数辨识的喘振状态快速诊断方法,以及一种用于实现压气机退喘的自抗扰控制策略。[方法]首先,采用长短期记忆神经网络(LSTM)处理压气机参数辨识输入输出数据的时序关系,并融入高斯过程回归(GPR)的区间概率估计能力,提出一种基于LSTM和GPR结合(LSTM-GPR)的混合深度学习参数辨识算法,进而实现对压气机喘振状态的快速诊断;然后,基于自抗扰控制方法对压气机的节流阀参数进行控制,通过控制量对压气机节流阀参数的补偿,实现对压气机喘振状态的准确控制。[结果]结果表明,混合深度学习参数辨识算法可以实现对压气机临界Greitzer参数的准确辨识,能快速、准确地判断出压气机是否处于喘振状态,并且基于自抗扰控制的控制策略,可以使压气机有效退出喘振状态,相比传统的PID控制和非线性反馈控制等控制方法,所提方法快速、有效,可保证压气机的工作范围。[结论]提出的参数辨识和自抗扰控制方法能够用于压气机的喘振诊断和主动控制,可提升压气机的安全性与稳定性。 展开更多
关键词 压气 喘振诊断 混合深度学习模型 自抗扰控制
下载PDF
基于混核极限学习机的道路高排放源识别方法
15
作者 段培杰 李泽瑞 +3 位作者 李鲲 许镇义 吕钊 康宇 《大气与环境光学学报》 CAS CSCD 2024年第1期62-72,共11页
由于道路高排放源所产生的污染气体对环境危害巨大,因此实现对高排放源的准确识别具有重要意义。而传统的基于限值划分的识别方法及新兴的人工智能识别方法在模型选择、评价指标、识别性能等方面都存在一定的改进空间,因此针对以上问题... 由于道路高排放源所产生的污染气体对环境危害巨大,因此实现对高排放源的准确识别具有重要意义。而传统的基于限值划分的识别方法及新兴的人工智能识别方法在模型选择、评价指标、识别性能等方面都存在一定的改进空间,因此针对以上问题,提出一种基于混核极限学习机的道路高排放源识别方法。该方法使用道路遥感监测设备获取的移动源遥测数据,在核极限学习机的基础上融合不同核函数,可提升模型鲁棒性及道路高排放源识别性能。针对合肥市蜀山区真实道路遥测数据上的分析结果表明,该方法相比于其他方法具有较高的F1分数以及较低的漏报率、虚警率,证实了该方法在高排放源识别中的有效性。因此,该方法有助于对交通路网中高排放车辆进行高效识别,为进一步提升城市空气质量提供支撑。 展开更多
关键词 高排放识别 混合函数 极限学习 道路遥感监测
下载PDF
蚁群优化算法协同深度极限学习机的热连轧宽度预测模型
16
作者 李嘉林 高杰 丁敬国 《材料与冶金学报》 CAS 北大核心 2024年第5期497-504,共8页
热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM... 热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM网络中,以提高其预测精度和泛化能力.先利用数据预处理方法对原始数据进行异常值的剔除和数据归一化.然后,使用蚁群优化算法对DELM的隐藏层节点数、迭代次数进行优化,在隐藏层节点数达到95个、迭代次数为480次时,DELM模型的预测性能最佳,其在预测不同规格带钢平均宽度时,决定系数R^(2)达到0.9989,97.98%的样本点预测误差分布在-7~7 mm.应用结果表明,与传统的深度极限学习机(DELM)、卷积神经网络(CNN)等模型相比,ACO-DELM模型在预测精度和泛化能力上有明显的提升,可有效应用于热轧带钢的平均宽度预测. 展开更多
关键词 热连轧 蚁群优化算法 深度极限学习 宽度预测
下载PDF
基于改进核极限学习机和集成算法的脱硫出口SO_(2)浓度预测
17
作者 闫浩思 赵文杰 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-117,共10页
脱硫出口SO_(2)浓度的准确预测对实现脱硫系统经济运行具有重要意义,针对脱硫出口SO_(2)浓度影响因素众多,难以准确预测这一问题,提出了基于龙格库塔优化的核极限学习机(KELM)和改进AdaBoost集成算法相结合的预测模型。首先采用核极限... 脱硫出口SO_(2)浓度的准确预测对实现脱硫系统经济运行具有重要意义,针对脱硫出口SO_(2)浓度影响因素众多,难以准确预测这一问题,提出了基于龙格库塔优化的核极限学习机(KELM)和改进AdaBoost集成算法相结合的预测模型。首先采用核极限学习机作为弱预测器,利用AdaBoost集成算法组合构建强预测器,通过调整脱硫系统不同工况下运行数据权重,建立了一种基于AdaBoost集成算法的出口SO_(2)浓度预测模型。为进一步提升模型学习性能和预测精度,通过引入惩罚系数和先验知识参数改进AdaBoost算法的损失函数,运用龙格库塔算法对KELM的正则系数C和核参数S进行寻优,克服初始参数设置对模型稳定性和预测精度的影响。最后利用电厂运行数据进行仿真实验,结果表明,所建立的出口SO_(2)浓度集成模型预测性能优越、准确度高,能够为脱硫系统优化控制提供技术支持。 展开更多
关键词 极限学习 AdaBoost集成学习 龙格库塔算法 脱硫出口SO_(2)浓度 预测模型
下载PDF
基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别 被引量:1
18
作者 汪自虎 王文天 +3 位作者 惠慧 王铭 李刚 许洪华 《高压电器》 CAS CSCD 北大核心 2024年第6期203-211,共9页
在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learn... 在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learning machine,KELM)的光伏接入配电网漏电识别方法。首先,构建了9维原始故障特征集,并采用NCA从9维特征集中选择得到4维高相关性特征子集;然后,将得到的4维特征子集作为KELM的输入,建立基于KELM的漏电识别模型,并通过麻雀搜索算法(sparrow search algorithm,SSA)对KELM模型中的参数进行优化;最后,将所提SSA-KELM方法应用于漏电识别,并与标准核极限学习机(KELM)、支持向量机(SVM)、BP神经网络(BPNN)进行了对比。比较结果表明:SSA-KELM对光伏接入配电网漏电类型的识别率最高,平均识别准确率达97.98%,为有效识别生物体触电与光伏漏电提供一定理论参考。 展开更多
关键词 光伏接入的配电网 生物触电 光伏设备漏电 近邻成分分析 极限学习 麻雀搜索算法
下载PDF
融合核极限学习机与PSR的混沌交通流预测
19
作者 夏晶晶 陈振 《计算机工程与设计》 北大核心 2024年第6期1880-1887,共8页
传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌... 传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌理论确定样本时序最佳延迟时间和嵌入维数,利用PSR对样本重构,利用优化核极限学习机建立短时混沌交通流预测模型。采用郑州市某主干路口车流实测数据进行实证分析,其结果表明,改进模型能够有效降低预测误差,实现混沌交通流实时准确预测。 展开更多
关键词 相空间重构 极限学习 交通流预测 蝴蝶优化算法 量子自适应 邻域扰动 惯性权重
下载PDF
基于数据驱动核极限学习机的风光容量配置方案研究
20
作者 涂菁菁 赵鹏 邹伟东 《电气应用》 2024年第10期32-38,共7页
风光发电的大量接入,将引起配电网规划与运行特征的根本性改变,因而研究配电网中风光发电的选址定容问题具有重要意义。先利用数据驱动构建基于核极限学习机的容量选择模型;再以总投资成本和网络损耗最小为目标函数,以电压稳定性为评价... 风光发电的大量接入,将引起配电网规划与运行特征的根本性改变,因而研究配电网中风光发电的选址定容问题具有重要意义。先利用数据驱动构建基于核极限学习机的容量选择模型;再以总投资成本和网络损耗最小为目标函数,以电压稳定性为评价指标对容量配置结果进行评估;最后采用IEEE 33节点系统作为算例进行仿真,将结果分别与支持向量机、粒子群和遗传算法进行比较。结果表明该容量配置方案能够起到节约成本、降低网络损耗及提高网络电压水平的作用,并能够为新能源接入配电网的投资方案提供一定的参考。 展开更多
关键词 配电网 数据驱动 极限学习 有功损耗 电压稳定
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部