网络中的资源分配问题一直备受关注,特别是在超高清视频流的传输中,对资源的有效管理至关重要。然而,随着网络服务的多样化和不断增加的业务类型,传统的资源分配策略往往显得不够灵活和智能。深度Q网络(Deep Q-Network,DQN)是一种能够...网络中的资源分配问题一直备受关注,特别是在超高清视频流的传输中,对资源的有效管理至关重要。然而,随着网络服务的多样化和不断增加的业务类型,传统的资源分配策略往往显得不够灵活和智能。深度Q网络(Deep Q-Network,DQN)是一种能够自适应地学习和调整资源分配策略的神经网络模型。它基于神经网络与Q-Learning算法,通过不断尝试和学习来决策最佳的资源分配方案。本文旨在研究一种在云演艺场景下基于深度Q网络的延迟敏感业务资源调度算法,以满足当今网络中多样化的业务需求。仿真结果表明,基于深度Q网络的延迟敏感业务资源调度算法使得用户体验质量(Quality of Experience)指标显著提升,表明所提算法能够更好地满足延迟敏感业务的需求。展开更多
针对深度Q网络(deep Q-network,DQN)算法收敛速度慢、规划路径不平滑及样本利用率低的问题,对其进行了改进。首先,在DQN算法的动作引导策略中引入了改进的人工势场引力函数和目标引导动作函数,同时设计了一种分段奖励函数,以此提出了启...针对深度Q网络(deep Q-network,DQN)算法收敛速度慢、规划路径不平滑及样本利用率低的问题,对其进行了改进。首先,在DQN算法的动作引导策略中引入了改进的人工势场引力函数和目标引导动作函数,同时设计了一种分段奖励函数,以此提出了启发式深度Q网络(heuristic deep Q-network,HDQN)算法,有效地减少了算法训练过程中的碰撞次数,提高了算法的收敛速度,使规划出的路径更优。然后,将HDQN算法与改进的优先级采样策略相结合,提出了一种贪心采样的启发式深度Q网络(greedy sampling heuristic deep Q-network,GSHDQN)算法,有效地提高了样本利用率。最后,对DQN、HDQN、GSHDQN这3种算法在Ubuntu系统进行了路径规划仿真。仿真结果表明,与DQN算法相比,GSHDQN算法平均总迭代时间可降低28.0%,平均路径长度可减少34.7%,碰撞次数可减少32.4%。展开更多
文摘网络中的资源分配问题一直备受关注,特别是在超高清视频流的传输中,对资源的有效管理至关重要。然而,随着网络服务的多样化和不断增加的业务类型,传统的资源分配策略往往显得不够灵活和智能。深度Q网络(Deep Q-Network,DQN)是一种能够自适应地学习和调整资源分配策略的神经网络模型。它基于神经网络与Q-Learning算法,通过不断尝试和学习来决策最佳的资源分配方案。本文旨在研究一种在云演艺场景下基于深度Q网络的延迟敏感业务资源调度算法,以满足当今网络中多样化的业务需求。仿真结果表明,基于深度Q网络的延迟敏感业务资源调度算法使得用户体验质量(Quality of Experience)指标显著提升,表明所提算法能够更好地满足延迟敏感业务的需求。
文摘针对深度Q网络(deep Q-network,DQN)算法收敛速度慢、规划路径不平滑及样本利用率低的问题,对其进行了改进。首先,在DQN算法的动作引导策略中引入了改进的人工势场引力函数和目标引导动作函数,同时设计了一种分段奖励函数,以此提出了启发式深度Q网络(heuristic deep Q-network,HDQN)算法,有效地减少了算法训练过程中的碰撞次数,提高了算法的收敛速度,使规划出的路径更优。然后,将HDQN算法与改进的优先级采样策略相结合,提出了一种贪心采样的启发式深度Q网络(greedy sampling heuristic deep Q-network,GSHDQN)算法,有效地提高了样本利用率。最后,对DQN、HDQN、GSHDQN这3种算法在Ubuntu系统进行了路径规划仿真。仿真结果表明,与DQN算法相比,GSHDQN算法平均总迭代时间可降低28.0%,平均路径长度可减少34.7%,碰撞次数可减少32.4%。