Tarim Large Igneous Province (TLIP) is the second Late Paleozoic LIPs in China after the recognition of Emeishan LIP, and is a hot research topic in geosciences. On the basis of the analysis of research history abou...Tarim Large Igneous Province (TLIP) is the second Late Paleozoic LIPs in China after the recognition of Emeishan LIP, and is a hot research topic in geosciences. On the basis of the analysis of research history about TLIP, this paper summarizes the re- search result during last twenty years and suggests the key research area in the future. The residual distribution range of TLIP is up to 250000 km2, and the largest residual thickness is 780 m. The eruption of basalt happened during 290-288 Ma and be- longs to LIPs magmatic event with fast eruption of magma. The lithological units of the TLIP include basalt, diabase, layered intrusive rock, breccia pipe mica-olivine pyroxenite, olivine pyroxenite, gabbro, ultramafic dyke, quartz syenite, quartz syenite porphyry and bimodal dyke. The basalt and diabase of TLIP exhibit OIB-like trace element patterns and enrichment of LILE and HFSE, and mainly belong to high TiO2 series. There is an obvious difference in isotope among the basalt from Keping and the basalt and dibase from the northern Tarim Basin. The basalt from Keping with negative eNa and high REE value derives from enriched mantle, and the diabase and basalt from the northern Tarim Basin with positive ENa and low REE value axe re- lated to depleted mantle. The crust uplifting in the Early Permian and the development of picrite and large scale dyke and for- mation of large scale V-Ti-Magnetite deposit in Wajilitag area support the view that the TLIP is related to mantle plume. The TLIP has a temporal-spatial relationship with Permian basic to ultra-basic igneous rock, which is distributed widely in Central Asia, and they represent a tectono-magmatic event with very important geodynamic setting. This paper also suggests that the deep geological process, the relation with mantle plume, mineralization, the relation with environmental change and biological evolution, and the geodynamics of the TLIP will be the key research topics in the future.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40930315)National Basic Research Program of China(Grant Nos.2007CB411303&2011CB808902)
文摘Tarim Large Igneous Province (TLIP) is the second Late Paleozoic LIPs in China after the recognition of Emeishan LIP, and is a hot research topic in geosciences. On the basis of the analysis of research history about TLIP, this paper summarizes the re- search result during last twenty years and suggests the key research area in the future. The residual distribution range of TLIP is up to 250000 km2, and the largest residual thickness is 780 m. The eruption of basalt happened during 290-288 Ma and be- longs to LIPs magmatic event with fast eruption of magma. The lithological units of the TLIP include basalt, diabase, layered intrusive rock, breccia pipe mica-olivine pyroxenite, olivine pyroxenite, gabbro, ultramafic dyke, quartz syenite, quartz syenite porphyry and bimodal dyke. The basalt and diabase of TLIP exhibit OIB-like trace element patterns and enrichment of LILE and HFSE, and mainly belong to high TiO2 series. There is an obvious difference in isotope among the basalt from Keping and the basalt and dibase from the northern Tarim Basin. The basalt from Keping with negative eNa and high REE value derives from enriched mantle, and the diabase and basalt from the northern Tarim Basin with positive ENa and low REE value axe re- lated to depleted mantle. The crust uplifting in the Early Permian and the development of picrite and large scale dyke and for- mation of large scale V-Ti-Magnetite deposit in Wajilitag area support the view that the TLIP is related to mantle plume. The TLIP has a temporal-spatial relationship with Permian basic to ultra-basic igneous rock, which is distributed widely in Central Asia, and they represent a tectono-magmatic event with very important geodynamic setting. This paper also suggests that the deep geological process, the relation with mantle plume, mineralization, the relation with environmental change and biological evolution, and the geodynamics of the TLIP will be the key research topics in the future.