目的针对Robert S Mackay等人提出的若非周期回复点生成的子转移中存在周期点,则此子转移是否包含一个不可数混乱集的问题,通过动力系统中为描述系统复杂性提供反例的工具-Sturm ian系统构造反例.方法利用符号动力系统的相关概念和Sturm...目的针对Robert S Mackay等人提出的若非周期回复点生成的子转移中存在周期点,则此子转移是否包含一个不可数混乱集的问题,通过动力系统中为描述系统复杂性提供反例的工具-Sturm ian系统构造反例.方法利用符号动力系统的相关概念和Sturm ian系统的极小非Li-Yorke混沌属性,构造了一类由非周期回复点生成含有周期点的子转移系统,并研究了其性质.结果a是符号空间中的非周期回复点,且orb(a)包含一个子转移σ的周期点,则orb(a)不包含一个不可数混乱(scrambled)集.结论若非周期回复点生成的子转移中存在周期点,则此子转移不一定包含一个不可数混乱集.展开更多
MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, in...MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.展开更多
For a class of mixing transformations of a compact metric space it is proved that each chaoticsubset is'small' but the possibility for any finite subset to display chaotic behavior is 'large'.
文摘目的针对Robert S Mackay等人提出的若非周期回复点生成的子转移中存在周期点,则此子转移是否包含一个不可数混乱集的问题,通过动力系统中为描述系统复杂性提供反例的工具-Sturm ian系统构造反例.方法利用符号动力系统的相关概念和Sturm ian系统的极小非Li-Yorke混沌属性,构造了一类由非周期回复点生成含有周期点的子转移系统,并研究了其性质.结果a是符号空间中的非周期回复点,且orb(a)包含一个子转移σ的周期点,则orb(a)不包含一个不可数混乱(scrambled)集.结论若非周期回复点生成的子转移中存在周期点,则此子转移不一定包含一个不可数混乱集.
文摘MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.
文摘For a class of mixing transformations of a compact metric space it is proved that each chaoticsubset is'small' but the possibility for any finite subset to display chaotic behavior is 'large'.