The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to de...The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to describe the measurement of the steepness, incline, gradient, or grade of a straight line. One of the structurally controlled modes of failure in jointed rock slopes is plane failure. There are numerous analytical methods for the rock slope stability including limit equilibrium, stress analysis and stereographic methods. The limiting equilibrium methods for slopes under various conditions against plane failure have been previously proposed by several investigators. However, these methods do not involve water pressure on sliding surfaces assessments due to water velocity and have not yet been validated by case study results. This paper has tried to explore the effects of forces due to water pressure on discontinuity surfaces in plane failure through applying the improved equations. It has studied the effect of water flow velocity on sliding surfaces in safety factor, as well. New equations for considering water velocity (fluid dynamics) are presented. To check the validity of the suggested equations, safety factor for a case study has been determined. Results show that velocity of water flow had significant effect on the amount of safety factor. Also, the suggested equations have higher validity rate compared to the current equations.展开更多
When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilata...When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilatancy angle,Ψ, the degree to which the basal soil dilates due to the shear, normally evolves during slope failure. A study by other researchers shows that if Ψ is constant, the block of dense soil will remain stable(or unstable) sliding when the velocity-weakening rate of the basal friction coefficient of the block is small(or large) enough. Moreover, during unstable sliding processes, the block of dense soil exhibits "periodic" patterns of intermittent slipping. Here, we used a more efficient and accurate numerical scheme to revisit that study. We expanded their model by assuming Ψ evolves during slope failure. Consequently, we acquired completely different results. For instance, even though the velocity-weakening rate of the friction coefficient is fixed at the same smaller(or larger) value that those researchers use, the stable(or unstable) steady states of landslide they predict will inversely change to unstable(or stable) when Ψ decreases(or increases) with the increase of slide displacement to a value small(or large) enough. Particularly, in unstable processes, the soil block exhibits "aperiodic" styles of intermittent slipping, instead of "periodic". We found out that the stick states appearing later last longer(or shorter) in the case of decreasing(or increasing) Ψ. Moreover, because the basic states of landslides with impacts of dilatancy evolution are not steady nor periodic, traditional stability-analysis methods cannot be "directly" used to analyze the stability of such landslides. Here, we broke through this technical problem to a degree. We showed that combining a concept called "quasi-steady-state approximation" with a traditional stability-analysis technique can qualitatively predict the instability onset of the landslides. Through this study, we demonstrated that the combination of Chebyshev collocation(CC) and 4^(th)-order Runge-Kutta methods is more accurate and efficient than the numerical scheme those researchers use.展开更多
Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so...Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so average sliding speed is about 30 meters per second. The longitudinal length of barrier dam which is formed by high-speed landslide along river is 803.4 meters; and maximum width crossing river is 611.8 meters. And its volume is estimated about 20.37 million steres. Through detailed geological investigation of the barrier dam, together with early geological information before earthquake, geological structures of the barrier dam and its stability of upstream and downstream slopes are studied when water level reaches different elevations in condition of continual after shocks with seismic intensity of 7 or 8 Richter scale. On this basis, dam-breaking mode of barrier dam is discussed deeply. Thereby, analytic results provide significant guidance and advices to front headquarters of Tangjiashan barrier dam, so that some proper engineering measures can be implemented and flood discharge can be carried out well.展开更多
文摘The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to describe the measurement of the steepness, incline, gradient, or grade of a straight line. One of the structurally controlled modes of failure in jointed rock slopes is plane failure. There are numerous analytical methods for the rock slope stability including limit equilibrium, stress analysis and stereographic methods. The limiting equilibrium methods for slopes under various conditions against plane failure have been previously proposed by several investigators. However, these methods do not involve water pressure on sliding surfaces assessments due to water velocity and have not yet been validated by case study results. This paper has tried to explore the effects of forces due to water pressure on discontinuity surfaces in plane failure through applying the improved equations. It has studied the effect of water flow velocity on sliding surfaces in safety factor, as well. New equations for considering water velocity (fluid dynamics) are presented. To check the validity of the suggested equations, safety factor for a case study has been determined. Results show that velocity of water flow had significant effect on the amount of safety factor. Also, the suggested equations have higher validity rate compared to the current equations.
基金financial support with the Grant No. MOST 105-2911-I-006-301
文摘When a block of dense sandy soil moves downhill, the shear-induced soil dilatancy along the basal shear boundary produces a negative value of excess pore pressure that increases the basal frictional resistance. Dilatancy angle,Ψ, the degree to which the basal soil dilates due to the shear, normally evolves during slope failure. A study by other researchers shows that if Ψ is constant, the block of dense soil will remain stable(or unstable) sliding when the velocity-weakening rate of the basal friction coefficient of the block is small(or large) enough. Moreover, during unstable sliding processes, the block of dense soil exhibits "periodic" patterns of intermittent slipping. Here, we used a more efficient and accurate numerical scheme to revisit that study. We expanded their model by assuming Ψ evolves during slope failure. Consequently, we acquired completely different results. For instance, even though the velocity-weakening rate of the friction coefficient is fixed at the same smaller(or larger) value that those researchers use, the stable(or unstable) steady states of landslide they predict will inversely change to unstable(or stable) when Ψ decreases(or increases) with the increase of slide displacement to a value small(or large) enough. Particularly, in unstable processes, the soil block exhibits "aperiodic" styles of intermittent slipping, instead of "periodic". We found out that the stick states appearing later last longer(or shorter) in the case of decreasing(or increasing) Ψ. Moreover, because the basic states of landslides with impacts of dilatancy evolution are not steady nor periodic, traditional stability-analysis methods cannot be "directly" used to analyze the stability of such landslides. Here, we broke through this technical problem to a degree. We showed that combining a concept called "quasi-steady-state approximation" with a traditional stability-analysis technique can qualitatively predict the instability onset of the landslides. Through this study, we demonstrated that the combination of Chebyshev collocation(CC) and 4^(th)-order Runge-Kutta methods is more accurate and efficient than the numerical scheme those researchers use.
基金funding from the National Natural Science Foundation Project (Grant No. 40772175, 40972175)the Scientific research fund of Southwest Jiaotong University (Grant No.2008-A01)+1 种基金the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No. DZKJ–08012)the National Natural Science Foundation Project-mutual fund of Yunnan Province (Grant No.U1033601)
文摘Tangjiashan landslide is a typical high-speed consequent landslide of medium-steep dip angle. This landslide triggered by earthquake took place in about semi-minute. The relative sliding displacement is 900 meters, so average sliding speed is about 30 meters per second. The longitudinal length of barrier dam which is formed by high-speed landslide along river is 803.4 meters; and maximum width crossing river is 611.8 meters. And its volume is estimated about 20.37 million steres. Through detailed geological investigation of the barrier dam, together with early geological information before earthquake, geological structures of the barrier dam and its stability of upstream and downstream slopes are studied when water level reaches different elevations in condition of continual after shocks with seismic intensity of 7 or 8 Richter scale. On this basis, dam-breaking mode of barrier dam is discussed deeply. Thereby, analytic results provide significant guidance and advices to front headquarters of Tangjiashan barrier dam, so that some proper engineering measures can be implemented and flood discharge can be carried out well.