电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其...电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。展开更多
文摘电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。