期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EMD-PSO-BP模型的短期潮流流速预测
1
作者
邵萌
潘正中
+2 位作者
孙金伟
邵珠晓
伊传秀
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原...
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。
展开更多
关键词
潮流流速预测
经验模态分解
反向传播神经网络
粒子群优化算法
本征模函数
下载PDF
职称材料
题名
基于EMD-PSO-BP模型的短期潮流流速预测
1
作者
邵萌
潘正中
孙金伟
邵珠晓
伊传秀
机构
中国海洋大学工程学院
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第11期134-141,共8页
基金
国家自然科学基金项目(51609224,52417305)
中国博士后科学基金项目(2022M713002)资助。
文摘
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。
关键词
潮流流速预测
经验模态分解
反向传播神经网络
粒子群优化算法
本征模函数
Keywords
tidal current speed prediction
empirical mode decomposition
back propagation neural network
particle swarm optimization algorithm
intrinsic mode function
分类号
P741 [天文地球—海洋科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EMD-PSO-BP模型的短期潮流流速预测
邵萌
潘正中
孙金伟
邵珠晓
伊传秀
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部