期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于多场耦合的无线电侦扰一体主机散热特性分析
1
作者 刘艳欣 朱乐乐 +3 位作者 沈华明 杨建江 黄家鹏 任欣悦 《航天器环境工程》 CSCD 2024年第3期325-335,共11页
针对无线电侦扰一体主机因高度集成引起的高热流密度导致散热难的问题,通过分析整机的散热路径,构建传热网络图;应用传热学和流体力学理论,建立主机热−流−固耦合散热数学模型;基于ANSYS Icepak仿真平台,构建主机的三维全尺寸数值模型研... 针对无线电侦扰一体主机因高度集成引起的高热流密度导致散热难的问题,通过分析整机的散热路径,构建传热网络图;应用传热学和流体力学理论,建立主机热−流−固耦合散热数学模型;基于ANSYS Icepak仿真平台,构建主机的三维全尺寸数值模型研究其散热特性。结果表明:当风扇风量约为56 m^(3)/h时,无线电侦扰一体主机的散热性能较好且噪声较小;当电源箱的热源同侧分布,侦扰箱和导航诱骗箱的热源异侧分布,且热源靠近进风口或出风口时,主机的散热性能好且效率高;当支架孔隙和设备间距分别为15 mm和10 mm时,主机的散热性能较好且结构强度高,同时主机质量和体积均较小;当散热器翅片的高度、厚度和间距分别为7.5 mm、1 mm和5 mm时,强化散热效果较好且主机质量小。 展开更多
关键词 侦扰一体主机 学理论 数学模型 热−−固耦合 特性
下载PDF
水力压裂分段射孔簇多裂缝空间偏转模拟研究 被引量:1
2
作者 王永亮 刘娜娜 王昊 《煤炭科学技术》 EI CAS CSCD 北大核心 2023年第9期160-169,共10页
深部致密油气储层水力压裂工程形成复杂缝网形态是影响油气采收率的关键因素,需要准确评估和优化压裂裂缝扩展行为。水平井多射孔簇分段压裂涉及储层和孔隙−裂隙内流体之间的热扩散、流体流动与岩体基质变形,热扩散效应和多物理场耦合... 深部致密油气储层水力压裂工程形成复杂缝网形态是影响油气采收率的关键因素,需要准确评估和优化压裂裂缝扩展行为。水平井多射孔簇分段压裂涉及储层和孔隙−裂隙内流体之间的热扩散、流体流动与岩体基质变形,热扩散效应和多物理场耦合作用是深部致密岩体压裂的典型特征;同时,压裂缝网扩展与裂缝间的扰动作用有关,压裂工艺中的射孔簇间距、起裂顺序等造成平行裂缝发生不同程度的非稳定扩展。理解多物理场耦合、裂缝间扰动等内外因素的影响机制,对有效评估压裂缝网具有重要意义。综合考虑深部储层的热−流−固耦合效应,研究水力压裂缝网三维扩展之间的应力阴影效应和多裂缝扰动偏转行为。研究建立水平井分段压裂的工程尺度三维数值模型,利用典型工况计算分析了压裂裂缝三维扩展的热扩散效应影响、不同射孔簇间距以及不同压裂方案(顺序、同步、交替压裂)下裂缝网络的扩展扰动行为。结果表明:深部致密油气储层压裂裂缝扩展引起的应力扰动区域在多裂缝中存在叠加、覆盖行为,形成应力阴影效应、造成裂缝空间偏转;水平井多射孔簇间距的减小,将增大应力阴影区,加剧裂缝间相互干扰;相比多射孔簇顺序压裂,同步压裂将增大应力阴影区,交替压裂可减小应力阴影区,交替压裂成为缓解压裂缝网三维扩展扰动、优化空间缝网形态的有效方案;深部致密油气储层岩体裂缝内的压裂液与岩体基质进行热交换,各压裂方案下的裂缝扩展面积、体积均有提升,表明热效应对裂缝扩展有促进作用,成为影响压裂裂缝扩展的重要因素。 展开更多
关键词 三维压裂裂缝 多裂缝扰动偏转 应力阴影效应 热−−固耦合 有限元−离散元模型
下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:7
3
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
下载PDF
Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips 被引量:2
4
作者 HUANG Hua-gui ZHANG Jun-peng JI Ce 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1133-1146,共14页
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the... Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip. 展开更多
关键词 unequal diameter twin-roll casting Cu/Al clad strips asymmetric heat transfer thermal-fluid coupled microstructure
下载PDF
Effect of working parameters on performance characteristics of hydrostatic turntable by using FSI-thermal model 被引量:3
5
作者 HU Jun-ping LIU Cheng-pei 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2589-2600,共12页
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl... Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential. 展开更多
关键词 hydrostatic turntable working parameters performance characteristics FSI-thermal coupled model
下载PDF
Mathematical model for coupled reactive flow and solute transport during heap bioleaching of copper sulfide 被引量:5
6
作者 尹升华 吴爱祥 +1 位作者 李希雯 王贻明 《Journal of Central South University》 SCIE EI CAS 2011年第5期1434-1440,共7页
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran... Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process. 展开更多
关键词 copper sulphide heap bioleaching leaching reaction solution flow solute transport
下载PDF
Coupled Seepage and Heat Transfer Intake Model
7
作者 吴君华 由世俊 +1 位作者 张欢 李海山 《Transactions of Tianjin University》 EI CAS 2009年第6期446-451,共6页
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter... In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP. 展开更多
关键词 seawater source heat pump renewable energy seawater intake beach well
下载PDF
Specific Heat of a Two-Layer Magnetic Superlattice
8
作者 QIU Rong-Ke LIANG Jing ZHAO Jian YING Cai-Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期969-973,共5页
The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,... The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,theapplied magnetic field,and the temperature all affect the specific heat of these superlattices.For both the ferromagneticand ferrimagnetic superlattices,the specific heat decreases with increasing the spin quantum number,the absolutevalue of interlayer exchange coupling,intralayer exchange coupling,and anisotropy,while it increases with increasingtemperature at low temperatures.When an applied magnetic field is enhanced,the specific heat decreases in the two-layerferromagnetic superlattice,while it is almost unchanged in the two-layer ferrimagnetic superlattice at low fieldrange at low temperatures. 展开更多
关键词 ferromagnetic and ferrimagnetic superlattice specific heat ANISOTROPY spin quantum numbers interlayer and intralayer exchange couplings applied magnetic field
下载PDF
A non-monotonic blow-off limit of micro-jet methane diffusion flame at different tube-wall thicknesses
9
作者 LI Dan LIU Bing +4 位作者 HUANG Long LIU Lei KE Wei-chang WAN Jian-long LIU Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1880-1890,共11页
In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in... In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner. 展开更多
关键词 micro-jet diffusion flame blow-off limit flow field strain effect conjugate heat exchange
下载PDF
Rheological numerical simulation for thermo-hydro-mechanical coupling analysis for rock mass
10
作者 王芝银 许杰 +2 位作者 李云鹏 郭书太 艾传志 《Journal of Coal Science & Engineering(China)》 2007年第2期135-139,共5页
Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological ... Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological behavior of rock mass. In the paper, based on the fundamental theories of rock mass coupling theory and rheological mechanics, the rheological model for fully coupled thermo-hydro-mechanical analysis for rock mass was set up, and the corresponding constitutive relationship, the conservation equation of mass and the conservation equation of energy were given, and the finite element formulas were derived for coupling analysis of rock mass. During establishing governing equations, rock mass was assumed approximately as macro-equivalent continuum medium. The obtained rheological numerical model for fully coupled thermo-hydro-mechanical analysis can be used for analyzing and predicting the long-term stability of underground caverns and slope engineering under the condition of thermo-hydro-mechanical coupling with rheological deformation. 展开更多
关键词 thermo-hydro-mechanical coupling rheological analysis FEM model rockmass
下载PDF
Steady-state coupled analysis of flowfields and thermochemical erosion of C/C nozzles in hybrid rocket motors 被引量:2
11
作者 ZHAO Sheng TIAN Hui +2 位作者 WANG PengFei YU NanJia CAI GuoBiao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第3期574-586,共13页
A hybrid rocket can be used in various applications and is an attractive propulsion system. However, serious erosion of nozzles is common in motor firing operations, which could restrict the application of hybrid rock... A hybrid rocket can be used in various applications and is an attractive propulsion system. However, serious erosion of nozzles is common in motor firing operations, which could restrict the application of hybrid rocket motors. Usually, the serious erosion is attributed to the high concentration of oxidizing species in hybrid motors, while the details of flowfields in the motors are not paid special attention to. In this paper, first the thermochemical erosion of C/C nozzle is simulated coupled with the flowfields in a 98% H2O2/hydroxyl-terminated polybutadiene(HTPB) hybrid rocket motor. The simulation is made on a typical axisymmetric motor, including a pre-combustion chamber, an aft-combustion chamber and nozzle structures. Thermochemica reactions of H2 O, CO2, OH, O and O2 with C are taken into account. Second, the change of flowfields due to fuel regression during motor firing operations is considered. Nozzle erosion in different flowfields is evaluated. Third, the results of nozzle erosion in the coupled simulation are compared with those under uniform and chemical equilibrium flow and motor firing test results. The results of simulation and firing tests indicate that the thermochemical erosion of nozzles in hybrid motors should be calculated coupled with flowfields in the motor. In uniform and chemical equilibrium flowfields, the erosion rate is overestimated. The diffusion flame in hybrid motors protects the nozzle surface from the injected oxidizer and high temperature products in flowfields, leading to a relatively fuel-rich environment above the nozzle. The influence of OH and the geometry of motor should also be considered in the evaluation of nozzle erosion in hybrid motors. 展开更多
关键词 hybrid rocket motor C/C nozzle thermochemical erosion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部