The energy-conserving performance of dividing wall column(DWC) is discussed in this paper. The heat transfer through the dividing wall is considered and the results are compared with that of common heat insulation div...The energy-conserving performance of dividing wall column(DWC) is discussed in this paper. The heat transfer through the dividing wall is considered and the results are compared with that of common heat insulation dividing wall column(HIDWC). Based on the thermodynamic analysis of heat transfer dividing wall column(HTDWC) and HIDWC, both computer simulation and experiments are employed to analyze the energyconserving situation. Mixtures of n-hexane, n-heptane and n-octane are chosen as the example for separation.The results show that the energy consumption of HTDWC is 50.3% less than that of conventional distillation column, while it is 46.4% less than that of HIDWC. It indicates that DWC is efficient on separating threecomponent mixtures and HTDWC can save more energy than HIDWC. Thus it is necessary to consider the heat transfer while applying DWC to industry.展开更多
Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and...Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and nanofluids lack a deeper discussion regarding the validity of the models currently used for representing the behaviour of a nanofluid in a heat pipe,particularly for unusual base fluids and nanoparticles such as carbon nanotubes or ethylene glycol.Thus,this comparative study presents the results of a set of computational simulations using pre-established equations for modelling a nanofluid in a heat pipe with experimental data from the literature.The results show agreement with the expected behaviour qualitatively and the presented maximum variations between 1.5% and 23.9% in comparison to the experimentally measured average temperatures.Also,the experimentally obtained temperature distribution of a heat pipe could not be reached numerically only with the use of adequate thermal properties,indicating that the boiling phenomenon is more complex than the current model used for computational simulations.Moreover,the existence of an optimal particle volume fraction for using nanofluids in this application could be observed by combining different properties models.展开更多
The ionization energies (IEs) of cyclopropenylidene (c-C3H2), propargylene (HCCCH) and propadienylidene (H2CCC) have been computed using the CCSD(T)/CBS method, which involves the approxixnation to the compl...The ionization energies (IEs) of cyclopropenylidene (c-C3H2), propargylene (HCCCH) and propadienylidene (H2CCC) have been computed using the CCSD(T)/CBS method, which involves the approxixnation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasi-perturbative triple excitation effect (CCSD(T)). The zero-point vibrational energy correction, the core-valence electronic correction, the scalar relativistic effect and the high level correction beyond the CCSD(T) excitations have also been made in these calculations. The CCSD(T)/CBS values for the IN(c-C3H2) and IE(HCCCH) of 9.164, 8.987 eV are in good agreement with the experimental values of (9.15±0.03) and (8.96±0.04) eV. The CCSD(T)/CBS calculations yield the IE values of 10.477 and 10.388 eV for the ionization transitions H2CCC→H2CCC^+ (^2A1, C2v) and H2CCC→H2CCC+ (^2A', Cs), respectively. On the basis of the Franek-Condon factor consideration, the IE of (10.43±0.02) eV determined in the previous single-photon ionization experiment most likely corresponds to the ionization threshold for the H2CCC→H2CCC^+(^2A1, C2v) transition. Although the precision of the experimental IN measurements fpr c-C3H2, HCCCH, and H2CCC is insufficient to pin down the accuracy of the theoretical calculations to better than ±30 meV, the excellent agreement between the experimental and theoretical IE values observed in the present study indicates that the CCSD(T)/CBS calculations together with high-order correlation corrections are capable of yielding reliable IE predictions for simple hydrocarbon carbenes and bi-radicals. We have also reported the heats of formation at 0 K (△H^of0) and 298 K (△H^of298)for c-C3H2/c-C3H2^+, HCCCH/HCCCH^+, and H2CCC/H2CCC^+, The available experimental △H^of0 and △H^of298 values for c-C3H2/c C3H2^+, HCCCH/HCCCH^+ are found to be in good accord with the CCSD(T)/CBS predictions after taking into account the experimental uncertainties.展开更多
For deep mining engineering, heat transfer of coal mass is a vital factor in the thermal environment of coal mines. In order to study the thermal conduction mechanism, we obtained gray images of coal mass microstructu...For deep mining engineering, heat transfer of coal mass is a vital factor in the thermal environment of coal mines. In order to study the thermal conduction mechanism, we obtained gray images of coal mass microstructure by scanning samples with a digital microscope. With the use of Matlab, these gray images were transformed into binary images, which were then transformed into a corresponding matrix consisting only of the values 0 and 1. According to the calculation method of box-counting dimension, we calculated the fractal dimension of the loose coal to be approximately 1.86. The thermal conductivity expressions of loose coal were derived based on the simulation method of thermal resistance. We calculated the thermal conductivity of loose coal by using a fractal model and compared the calculated values with our experimental data. The results show that the test data show an encourag-ing agreement with the calculated values. Hence fractal theory is a feasible method for studying thermal conductivity of loose coal.展开更多
Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, dis...Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, disc specimen was objected to airflow at the temperatures about 1,000℃. In this study, finite element structural and thermal analyses were carried out on both uncoated (without coating) and ceramic-coated disc specimen using ANSYS code. A 150 micron super alloy bond coating (NiCrAIY) was first applied to the specimen. Then, the disc specimen was covered by 350 micron thickness of Mullit (3Al2O3.2SiO2) as a top coating. These analysis were performed for detecting the possible thermally problem areas. The disc's thermal stressed problematic areas were determined by the finite element analysis was helpful for improving the geometry and TBC.展开更多
Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop hea...Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.展开更多
Chemical modification of MWCNTs via oxidation followed by side wall functionalization using polyethylene glycol (PEG) and octadecylamine (ODA), separately, was studied. Different characterization techniques such a...Chemical modification of MWCNTs via oxidation followed by side wall functionalization using polyethylene glycol (PEG) and octadecylamine (ODA), separately, was studied. Different characterization techniques such as FTIR spectrometery, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and solubility in different solvents were performed for the oxidized MWCNTs, MWCNTs-PEG and MWCNTs-ODA. The characterization techniques proved the presence of the functional groups on the MWCNTs surface. Thermal gravimetric analysis revealed that nearly 16% (by weight) of the MWCNTs were functionalized with PEG and 39% (by weight) was functionalized with ODA.展开更多
A numerical model to predict the temperature field in a hermetic reciprocating compressor for household refrigeration appliances is presented in this work. The model combines a high resolution three-dimensional heat c...A numerical model to predict the temperature field in a hermetic reciprocating compressor for household refrigeration appliances is presented in this work. The model combines a high resolution three-dimensional heat conduction formulation of the compressor's solid parts, a three-dimensional CFD (computational fluid dynamics) approach for the gas line domain and lumped formulations of the shell gas and the lubrication oil. Heat transfer coefficients are determined by applying CFD to the gas line side and correlations from the literature on the shell gas and oil side, respectively. The valve in the gas line simulation is modelled as a parallel moving fiat plate. By means of an iterative loop the temperature field of the solid parts acts as boundary condition for the CFD calculation of the gas line which returns a cycle averaged quantity of heat to the solid parts. Using an iteration method which is based on the temperature deviation between two iteration steps, the total number of iterations and consequently the computational time can be reduced. The loop is continued until a steady-state temperature field is obtained. Calculated temperatures of the solid parts are verified by temperature measurements of a calorimeter test bench.展开更多
A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rp...A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.展开更多
A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the ...A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.展开更多
Based on the combination of stochastic mathematics and conventional finite difference method,a new numerical computing technique named stochastic finite difference for solving heat conduction problems with random phys...Based on the combination of stochastic mathematics and conventional finite difference method,a new numerical computing technique named stochastic finite difference for solving heat conduction problems with random physical parameters,initial and boundary conditions is discussed.Begin with the analysis of steady-state heat conduction problems,difference discrete equations with random parameters are established,and then the computing formulas for the mean value and variance of temperature field are derived by the second-order stochastic parameter perturbation method.Subsequently,the proposed random model and method are extended to the field of transient heat conduction and the new analysis theory of stability applicable to stochastic difference schemes is developed.The layer-by-layer recursive equations for the first two probabilistic moments of the transient temperature field at different time points are quickly obtained and easily solved by programming.Finally,by comparing the results with traditional Monte Carlo simulation,two numerical examples are given to demonstrate the feasibility and effectiveness of the presented method for solving both steady-state and transient heat conduction problems.展开更多
基金Supported by the National Natural Science Foundation of China(21306036)Science&Technology Research Fund Project for Outstanding Youth in Colleges and Universities of Hebei province(Y2012040)the Joint Specialized Research Fund for the Doctoral Program of Higher Education of China(20131317120014)
文摘The energy-conserving performance of dividing wall column(DWC) is discussed in this paper. The heat transfer through the dividing wall is considered and the results are compared with that of common heat insulation dividing wall column(HIDWC). Based on the thermodynamic analysis of heat transfer dividing wall column(HTDWC) and HIDWC, both computer simulation and experiments are employed to analyze the energyconserving situation. Mixtures of n-hexane, n-heptane and n-octane are chosen as the example for separation.The results show that the energy consumption of HTDWC is 50.3% less than that of conventional distillation column, while it is 46.4% less than that of HIDWC. It indicates that DWC is efficient on separating threecomponent mixtures and HTDWC can save more energy than HIDWC. Thus it is necessary to consider the heat transfer while applying DWC to industry.
基金CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil) for the scholarship to Prof. Rodrigo Vidonscky Pinto.
文摘Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and nanofluids lack a deeper discussion regarding the validity of the models currently used for representing the behaviour of a nanofluid in a heat pipe,particularly for unusual base fluids and nanoparticles such as carbon nanotubes or ethylene glycol.Thus,this comparative study presents the results of a set of computational simulations using pre-established equations for modelling a nanofluid in a heat pipe with experimental data from the literature.The results show agreement with the expected behaviour qualitatively and the presented maximum variations between 1.5% and 23.9% in comparison to the experimentally measured average temperatures.Also,the experimentally obtained temperature distribution of a heat pipe could not be reached numerically only with the use of adequate thermal properties,indicating that the boiling phenomenon is more complex than the current model used for computational simulations.Moreover,the existence of an optimal particle volume fraction for using nanofluids in this application could be observed by combining different properties models.
文摘The ionization energies (IEs) of cyclopropenylidene (c-C3H2), propargylene (HCCCH) and propadienylidene (H2CCC) have been computed using the CCSD(T)/CBS method, which involves the approxixnation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasi-perturbative triple excitation effect (CCSD(T)). The zero-point vibrational energy correction, the core-valence electronic correction, the scalar relativistic effect and the high level correction beyond the CCSD(T) excitations have also been made in these calculations. The CCSD(T)/CBS values for the IN(c-C3H2) and IE(HCCCH) of 9.164, 8.987 eV are in good agreement with the experimental values of (9.15±0.03) and (8.96±0.04) eV. The CCSD(T)/CBS calculations yield the IE values of 10.477 and 10.388 eV for the ionization transitions H2CCC→H2CCC^+ (^2A1, C2v) and H2CCC→H2CCC+ (^2A', Cs), respectively. On the basis of the Franek-Condon factor consideration, the IE of (10.43±0.02) eV determined in the previous single-photon ionization experiment most likely corresponds to the ionization threshold for the H2CCC→H2CCC^+(^2A1, C2v) transition. Although the precision of the experimental IN measurements fpr c-C3H2, HCCCH, and H2CCC is insufficient to pin down the accuracy of the theoretical calculations to better than ±30 meV, the excellent agreement between the experimental and theoretical IE values observed in the present study indicates that the CCSD(T)/CBS calculations together with high-order correlation corrections are capable of yielding reliable IE predictions for simple hydrocarbon carbenes and bi-radicals. We have also reported the heats of formation at 0 K (△H^of0) and 298 K (△H^of298)for c-C3H2/c-C3H2^+, HCCCH/HCCCH^+, and H2CCC/H2CCC^+, The available experimental △H^of0 and △H^of298 values for c-C3H2/c C3H2^+, HCCCH/HCCCH^+ are found to be in good accord with the CCSD(T)/CBS predictions after taking into account the experimental uncertainties.
基金support for this study, provided by the National Natural Science Foundation of China (Nos50534040 and 50974117)the Research Fund of the State Key Laboratory of Coal Resources & Mine Safety, CUMT (No07KF10)
文摘For deep mining engineering, heat transfer of coal mass is a vital factor in the thermal environment of coal mines. In order to study the thermal conduction mechanism, we obtained gray images of coal mass microstructure by scanning samples with a digital microscope. With the use of Matlab, these gray images were transformed into binary images, which were then transformed into a corresponding matrix consisting only of the values 0 and 1. According to the calculation method of box-counting dimension, we calculated the fractal dimension of the loose coal to be approximately 1.86. The thermal conductivity expressions of loose coal were derived based on the simulation method of thermal resistance. We calculated the thermal conductivity of loose coal by using a fractal model and compared the calculated values with our experimental data. The results show that the test data show an encourag-ing agreement with the calculated values. Hence fractal theory is a feasible method for studying thermal conductivity of loose coal.
文摘Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, disc specimen was objected to airflow at the temperatures about 1,000℃. In this study, finite element structural and thermal analyses were carried out on both uncoated (without coating) and ceramic-coated disc specimen using ANSYS code. A 150 micron super alloy bond coating (NiCrAIY) was first applied to the specimen. Then, the disc specimen was covered by 350 micron thickness of Mullit (3Al2O3.2SiO2) as a top coating. These analysis were performed for detecting the possible thermally problem areas. The disc's thermal stressed problematic areas were determined by the finite element analysis was helpful for improving the geometry and TBC.
文摘Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.
文摘Chemical modification of MWCNTs via oxidation followed by side wall functionalization using polyethylene glycol (PEG) and octadecylamine (ODA), separately, was studied. Different characterization techniques such as FTIR spectrometery, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and solubility in different solvents were performed for the oxidized MWCNTs, MWCNTs-PEG and MWCNTs-ODA. The characterization techniques proved the presence of the functional groups on the MWCNTs surface. Thermal gravimetric analysis revealed that nearly 16% (by weight) of the MWCNTs were functionalized with PEG and 39% (by weight) was functionalized with ODA.
文摘A numerical model to predict the temperature field in a hermetic reciprocating compressor for household refrigeration appliances is presented in this work. The model combines a high resolution three-dimensional heat conduction formulation of the compressor's solid parts, a three-dimensional CFD (computational fluid dynamics) approach for the gas line domain and lumped formulations of the shell gas and the lubrication oil. Heat transfer coefficients are determined by applying CFD to the gas line side and correlations from the literature on the shell gas and oil side, respectively. The valve in the gas line simulation is modelled as a parallel moving fiat plate. By means of an iterative loop the temperature field of the solid parts acts as boundary condition for the CFD calculation of the gas line which returns a cycle averaged quantity of heat to the solid parts. Using an iteration method which is based on the temperature deviation between two iteration steps, the total number of iterations and consequently the computational time can be reduced. The loop is continued until a steady-state temperature field is obtained. Calculated temperatures of the solid parts are verified by temperature measurements of a calorimeter test bench.
文摘A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51579244, 51506220 and 51356001)
文摘A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.
基金supported by the National Natural Science Foundation of China(Grant Nos.90816024,10872017 and 10876100)the Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)the 111 Project(Grant No.B07009)
文摘Based on the combination of stochastic mathematics and conventional finite difference method,a new numerical computing technique named stochastic finite difference for solving heat conduction problems with random physical parameters,initial and boundary conditions is discussed.Begin with the analysis of steady-state heat conduction problems,difference discrete equations with random parameters are established,and then the computing formulas for the mean value and variance of temperature field are derived by the second-order stochastic parameter perturbation method.Subsequently,the proposed random model and method are extended to the field of transient heat conduction and the new analysis theory of stability applicable to stochastic difference schemes is developed.The layer-by-layer recursive equations for the first two probabilistic moments of the transient temperature field at different time points are quickly obtained and easily solved by programming.Finally,by comparing the results with traditional Monte Carlo simulation,two numerical examples are given to demonstrate the feasibility and effectiveness of the presented method for solving both steady-state and transient heat conduction problems.