Intracellular RNA viruses are sensed by receptors retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) that trigger the formation of MAVS signal complex on mitochondria. Consequ...Intracellular RNA viruses are sensed by receptors retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) that trigger the formation of MAVS signal complex on mitochondria. Consequently, this leads to the activation of TANK-binding kinase 1 (TBK1) and phosphorylation of interferon regulatory factor 3 (IRF3), both of which constitutively associate with cytosolic chaperone Hsp90. It remains largely unknown how MAVS activates TBK1/IRF3. In this study, we identified translocases of outer membrane 70 (Tom70), a mitochondrial import receptor, to interact with MAVS upon RNA virus infection. Ectopic expression or knockdown of Tom70 could enhance or impair IRF3-mediated gene expression, respectively. Mechanistically, the clamp domain (R192) of Tom70 interacts with the C-terminal motif (EEVD) of Hsp90, thus recruiting TBK1/IRF3 to mitochondria. Disruption of this interaction or mislocation of Tom70 sharply impairs activation of TBK1 and IRF3. Furthermore, host antiviral responses are significantly boosted or crippled in the presence or absence of Tom70. Collectively, our study characterizes Tom70 as a critical adaptor linking MAVS to TBK1/IRF3, revealing that mitochondrion is evolutionarily integrated with innate immunity.展开更多
This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over ...This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.展开更多
Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion...Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion was dependent on temperature and was greatly accelerated by ash deposition.The mass gain was distinctly reduced in the presence of SO2 with and without ash deposition on the specimens.Corrosion rates with ash deposit at different temperatures were calculated.Two feasible methods were provided to avoid serious high-temperature corrosion in the biomass boiler.展开更多
Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent...Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.展开更多
In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal...In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.展开更多
Classification of energy efficiency system for agricultural heater was discussed and analyzed in order to derive an energy efficiency classification scheme for agricultural heater. Current practices of energy efficien...Classification of energy efficiency system for agricultural heater was discussed and analyzed in order to derive an energy efficiency classification scheme for agricultural heater. Current practices of energy efficiency programs for other products such as residential gas boiler were investigated and analyzed. Test items including energy efficiency and standby power for agricultural heater were analyzed. With the data of residential gas boiler, grade distribution of energy efficiency system was made and evaluated. An energy efficiency classification scheme for agricultural heater was proposed and applied to agricultural heaters, and the scheme was justified. Introducing a new energy efficiency classification system to the agricultural heater industry, it is expected that considerable amount of fossil fuels can be reduced by adopting energy efficiency classification system.展开更多
China is the largest solar water heater producer and market in the world.Despite the fast growth and an installed capacity that accounts for the majority of the global gross,China's per capita solar hot water capa...China is the largest solar water heater producer and market in the world.Despite the fast growth and an installed capacity that accounts for the majority of the global gross,China's per capita solar hot water capacity is still very low,implying a huge margin of market potential;and the recognition of the industry in the global market is handicapped by the scattered scale of production and inconsistent product quality.To ensure continued growth of China's solar water heating(SWH) industry,Chinese Government has established a series of national SWH standards,three national testing centers,and a certification program to lay the foundation for the development of the Golden Sun product labeling system.China General Certification Center(CGC) developed the Golden Sun product certification and labeling system on a pass/fail basis evaluating with established criteria.The system was designed to help manufacturers acclimate to explicit consistent requirements and to identify and fix the deficiencies in the design and execution of the program itself.Timely revision and integration of the national standards are recommended to accommodate the test procedures and requirements to new technologies and the evolving SWH market.Strict implementation of the Golden Sun certification and labeling system are suggested to avail improving the quality control and forging internationally reputable brands of Chinese solar water heating products.展开更多
This is an improved design based on the existing plate type solar water heaters. It aims at making full use of solar energy. To fully absorb radiation, it absorbs coating selectively by adopting the magnetron sputteri...This is an improved design based on the existing plate type solar water heaters. It aims at making full use of solar energy. To fully absorb radiation, it absorbs coating selectively by adopting the magnetron sputtering technology AL-N/AL. this design conduct heat through aluminum material which can reduce the cost meanwhile conduct heat effectively. To ensure the quality of the water at the same time improve the utilization rate of solar energy, this design use phase change for second heat exchange. Take Shanghai for example, where this design and heat transfer model are applied, the average efficiency of water heaters can achieve 68%, which has proven the feasibility of the design. In a word, this design can achieve the goal of energy conservation and emissions reduction and has broad market prospects.展开更多
The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within...The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.展开更多
The structural evolution of the chars from pyrolysis of biomass components (cellulose, hemicellulose and lignin) in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the...The structural evolution of the chars from pyrolysis of biomass components (cellulose, hemicellulose and lignin) in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the C content increased at the expense of H and O contents during the chars formation. The values of AH/C/ZSO/c for the formation of cellulose and hemicellulose chars were close to 2, indicating that dehydration was the dominant reaction. Meanwhile, the value was more than 3 for lignin char formation, suggesting that the occurrence of demethoxylation was prevalent. FTIR and XRD analyses further disclosed that the cellulose pyrolysis needed to break down the stable crystal structure prior to the severe depolymerization. As for hemicellulose and lignin pyrolysis, the weak branches and linkages decomposed firstly, followed by the major decomposition. After the devolatilization at the main pyrolysis stage, the three components encountered a slow carbonization process to form condensed aromatic chars. The SEM results showed that the three components underwent different devolatilization behaviors, which induced various surface mornhologies of the chars.展开更多
The thermal engineering research has been executed for the threecircuit heat exchanger of a coiled type, that provides the thermal loads regulation for the heating and hot water supply systems. A processing curve of t...The thermal engineering research has been executed for the threecircuit heat exchanger of a coiled type, that provides the thermal loads regulation for the heating and hot water supply systems. A processing curve of the warmth supply regulation at a combined heating and hot water supply load, was used at that. It is important to know the processes running inside the apparatus for the technical characteristics improvement of the threecircuit heat exchanger of a coiled type. The task solution will allow save the materials consumption for the threecircuit heat exchangers of a coiled type manufacturing in the future.展开更多
An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a ...An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance- and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.展开更多
The hot-compression of Al-IMn-IMg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s 1 by total strain...The hot-compression of Al-IMn-IMg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s 1 by total strain of 1.4. Microstructure and texture evolution of the hot-compressed alloy were investigated by optical microscopy and X-ray diffraction analysis, respectively. The results show that the relationship among flow stress a, deformation temperature T and strain rate ε can be expressed in the form of βσ = lnε+Q/(RT)-lnA. The threshold value of In Z (Z is Zener-Hollomon parameter) characterizing the dynamic recrystallization (DRX) is 46, below which the DRX takes place. A strong P orientation {011}(455) associated with a weak cube orientation { 100} (001) is found in the recrystallized sample during hot-compression.展开更多
This work presents results on the commissioning of the new heat exchanger of the IEA-R1 nuclear reactor in the occasion of its operational power upgrade from 2 MW to 5 MW, in comparison to the values calculated in the...This work presents results on the commissioning of the new heat exchanger of the IEA-R1 nuclear reactor in the occasion of its operational power upgrade from 2 MW to 5 MW, in comparison to the values calculated in the project of IESA Design and Equipments Company. This reactor is a swimming pool type, light water moderated and with graphite reflectors, used for research purposes and medical radioisotopes production. During monitoring procedures, issues were observed on the reactor operation at 5 MW mainly due to the ageing of the reactor's oldest heat exchanger (TC-A) and excessive vibrations at high flow rates on the other installed heat exchanger (TC-B). So it was decided to provide a new IESA heat exchanger with 5 MW capacity to definitely substitute the TC-A heat exchanger. The results show that the IEA-R1 nuclear reactor can be operated safely and continuously at 5 MW with the new IESA heat exchanger.展开更多
The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technolog...The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.展开更多
In order to optimize the electricity yield of CSP (concentrated solar power) plants, TES (thermal energy storage) systems are regarded as an essential component. Furthermore, for many electricity grid operators, i...In order to optimize the electricity yield of CSP (concentrated solar power) plants, TES (thermal energy storage) systems are regarded as an essential component. Furthermore, for many electricity grid operators, it is important to have spinning reserves in the grid and dispatchable power available, both offered by CSP-plants with integrated thermal energy storage. Enolcon is developing a new TES-system since several years. The system itself was designed to offer a principle simple and robust setup (with regard to execution and operation) and which is reducing the electricity costs of CSP-power plants by the consequent use of state of the art technology. Furthermore, such system shall be open to future developments of CSP-systems with regard to increasing steam temperatures and steam pressure. Such TES-system shall be commercially available for large scale application already in year 2014/2015. The key elements of the enolcon-TES are the open cycle using always ambient air with an air-air-heat exchanger and the arrangement of the storage material in such way to minimize the pressure losses and the own electricity consumption. The development is progressing in a structured way by studies, engineering works, TES-pilot plants, isothermal air flow test plant for the verification of the CFD-calculations, and since end of 2012 by the operation of a high temperature TES-module with all features of the large scale modules.展开更多
Focusing on the aeroelastic stability of thin panel structure of airframe component such as engine nozzle of high-speed flight vehicles,a nonlinear aeroelastic model for a two-dimensional heated panel exposing both su...Focusing on the aeroelastic stability of thin panel structure of airframe component such as engine nozzle of high-speed flight vehicles,a nonlinear aeroelastic model for a two-dimensional heated panel exposing both surfaces to the airflow with different aerodynamic pressures is established.The von Karman large deflection plate theory and the first-order piston theory are used in the formulation of aeroelastic motion.The critical conditions for aeroelastic stability and the stability boundaries are obtained using theoretical analysis and numerical computations,respectively.The results show that the panel is more prone to become unstable when its two surfaces are subject to aerodynamic loading simultaneously;only if the sum of the aerodynamic pressures on both surfaces of the panel satisfies flutter stability condition,can the panel be likely aeroelastically stable;compared with the general panel flutter problem that only one surface is exposed to the airflows,the present condition makes the panel become aeroelastically unstable at relatively small flight aerodynamic pressure.展开更多
Hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distribu...Hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distributions of thermal and stress fields in the infrared window for hypersonic vehicles based on flowfield studies. A theoretical guidance is provided to evaluate the influence of aerodynamic heating and forces on infrared window materials. The aerodynamic heat flux from Mach 3 to Mach 6 flight at an altitude of 15 km in a standard atmosphere is obtained through flowfield analysis. The thermal and stress responses are then investigated under constant heat transfer coefficient boundary conditions for different Mach numbers. The numerical results show that the maximum stress is higher than the material strength at Mach 6, which means a failure of the material may occur. The maximum stress and temperatures are lower than the material strength and melting point under other conditions, so the material is safe.展开更多
文摘Intracellular RNA viruses are sensed by receptors retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) that trigger the formation of MAVS signal complex on mitochondria. Consequently, this leads to the activation of TANK-binding kinase 1 (TBK1) and phosphorylation of interferon regulatory factor 3 (IRF3), both of which constitutively associate with cytosolic chaperone Hsp90. It remains largely unknown how MAVS activates TBK1/IRF3. In this study, we identified translocases of outer membrane 70 (Tom70), a mitochondrial import receptor, to interact with MAVS upon RNA virus infection. Ectopic expression or knockdown of Tom70 could enhance or impair IRF3-mediated gene expression, respectively. Mechanistically, the clamp domain (R192) of Tom70 interacts with the C-terminal motif (EEVD) of Hsp90, thus recruiting TBK1/IRF3 to mitochondria. Disruption of this interaction or mislocation of Tom70 sharply impairs activation of TBK1 and IRF3. Furthermore, host antiviral responses are significantly boosted or crippled in the presence or absence of Tom70. Collectively, our study characterizes Tom70 as a critical adaptor linking MAVS to TBK1/IRF3, revealing that mitochondrion is evolutionarily integrated with innate immunity.
基金the National Natural Science Foundation of China(No.11902153)the Natural Science Foundation of Jiangsu Province(No.BK20190378)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.
文摘Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion was dependent on temperature and was greatly accelerated by ash deposition.The mass gain was distinctly reduced in the presence of SO2 with and without ash deposition on the specimens.Corrosion rates with ash deposit at different temperatures were calculated.Two feasible methods were provided to avoid serious high-temperature corrosion in the biomass boiler.
文摘Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.
基金Project(51076062) supported by the National Natural Science Foundation of China
文摘In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.
文摘Classification of energy efficiency system for agricultural heater was discussed and analyzed in order to derive an energy efficiency classification scheme for agricultural heater. Current practices of energy efficiency programs for other products such as residential gas boiler were investigated and analyzed. Test items including energy efficiency and standby power for agricultural heater were analyzed. With the data of residential gas boiler, grade distribution of energy efficiency system was made and evaluated. An energy efficiency classification scheme for agricultural heater was proposed and applied to agricultural heaters, and the scheme was justified. Introducing a new energy efficiency classification system to the agricultural heater industry, it is expected that considerable amount of fossil fuels can be reduced by adopting energy efficiency classification system.
文摘China is the largest solar water heater producer and market in the world.Despite the fast growth and an installed capacity that accounts for the majority of the global gross,China's per capita solar hot water capacity is still very low,implying a huge margin of market potential;and the recognition of the industry in the global market is handicapped by the scattered scale of production and inconsistent product quality.To ensure continued growth of China's solar water heating(SWH) industry,Chinese Government has established a series of national SWH standards,three national testing centers,and a certification program to lay the foundation for the development of the Golden Sun product labeling system.China General Certification Center(CGC) developed the Golden Sun product certification and labeling system on a pass/fail basis evaluating with established criteria.The system was designed to help manufacturers acclimate to explicit consistent requirements and to identify and fix the deficiencies in the design and execution of the program itself.Timely revision and integration of the national standards are recommended to accommodate the test procedures and requirements to new technologies and the evolving SWH market.Strict implementation of the Golden Sun certification and labeling system are suggested to avail improving the quality control and forging internationally reputable brands of Chinese solar water heating products.
文摘This is an improved design based on the existing plate type solar water heaters. It aims at making full use of solar energy. To fully absorb radiation, it absorbs coating selectively by adopting the magnetron sputtering technology AL-N/AL. this design conduct heat through aluminum material which can reduce the cost meanwhile conduct heat effectively. To ensure the quality of the water at the same time improve the utilization rate of solar energy, this design use phase change for second heat exchange. Take Shanghai for example, where this design and heat transfer model are applied, the average efficiency of water heaters can achieve 68%, which has proven the feasibility of the design. In a word, this design can achieve the goal of energy conservation and emissions reduction and has broad market prospects.
文摘The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.
基金Supported by the National Natural Science Foundation of China(51276166)the National Basic Research Program of China(2013CB228101)the National Science and Technology Supporting Plan Through Contract(2015BAD15B06)
文摘The structural evolution of the chars from pyrolysis of biomass components (cellulose, hemicellulose and lignin) in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the C content increased at the expense of H and O contents during the chars formation. The values of AH/C/ZSO/c for the formation of cellulose and hemicellulose chars were close to 2, indicating that dehydration was the dominant reaction. Meanwhile, the value was more than 3 for lignin char formation, suggesting that the occurrence of demethoxylation was prevalent. FTIR and XRD analyses further disclosed that the cellulose pyrolysis needed to break down the stable crystal structure prior to the severe depolymerization. As for hemicellulose and lignin pyrolysis, the weak branches and linkages decomposed firstly, followed by the major decomposition. After the devolatilization at the main pyrolysis stage, the three components encountered a slow carbonization process to form condensed aromatic chars. The SEM results showed that the three components underwent different devolatilization behaviors, which induced various surface mornhologies of the chars.
文摘The thermal engineering research has been executed for the threecircuit heat exchanger of a coiled type, that provides the thermal loads regulation for the heating and hot water supply systems. A processing curve of the warmth supply regulation at a combined heating and hot water supply load, was used at that. It is important to know the processes running inside the apparatus for the technical characteristics improvement of the threecircuit heat exchanger of a coiled type. The task solution will allow save the materials consumption for the threecircuit heat exchangers of a coiled type manufacturing in the future.
基金Project supported by the National Natural Sciences Foundation of China (No. 50536040)the University Doctoral Subject Special Foundation of China (No. 20050335047)+1 种基金the Postdoctoral Science Foundation of Zhejiang Province (No. 2006-bsh-21)the Natural Science Foundation of Zhejiang Province (No. Y107229), China
文摘An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance- and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.
基金Project(2007BAE38B01) supported by National Science and Technology Pillar Program
文摘The hot-compression of Al-IMn-IMg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s 1 by total strain of 1.4. Microstructure and texture evolution of the hot-compressed alloy were investigated by optical microscopy and X-ray diffraction analysis, respectively. The results show that the relationship among flow stress a, deformation temperature T and strain rate ε can be expressed in the form of βσ = lnε+Q/(RT)-lnA. The threshold value of In Z (Z is Zener-Hollomon parameter) characterizing the dynamic recrystallization (DRX) is 46, below which the DRX takes place. A strong P orientation {011}(455) associated with a weak cube orientation { 100} (001) is found in the recrystallized sample during hot-compression.
文摘This work presents results on the commissioning of the new heat exchanger of the IEA-R1 nuclear reactor in the occasion of its operational power upgrade from 2 MW to 5 MW, in comparison to the values calculated in the project of IESA Design and Equipments Company. This reactor is a swimming pool type, light water moderated and with graphite reflectors, used for research purposes and medical radioisotopes production. During monitoring procedures, issues were observed on the reactor operation at 5 MW mainly due to the ageing of the reactor's oldest heat exchanger (TC-A) and excessive vibrations at high flow rates on the other installed heat exchanger (TC-B). So it was decided to provide a new IESA heat exchanger with 5 MW capacity to definitely substitute the TC-A heat exchanger. The results show that the IEA-R1 nuclear reactor can be operated safely and continuously at 5 MW with the new IESA heat exchanger.
文摘The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.
文摘In order to optimize the electricity yield of CSP (concentrated solar power) plants, TES (thermal energy storage) systems are regarded as an essential component. Furthermore, for many electricity grid operators, it is important to have spinning reserves in the grid and dispatchable power available, both offered by CSP-plants with integrated thermal energy storage. Enolcon is developing a new TES-system since several years. The system itself was designed to offer a principle simple and robust setup (with regard to execution and operation) and which is reducing the electricity costs of CSP-power plants by the consequent use of state of the art technology. Furthermore, such system shall be open to future developments of CSP-systems with regard to increasing steam temperatures and steam pressure. Such TES-system shall be commercially available for large scale application already in year 2014/2015. The key elements of the enolcon-TES are the open cycle using always ambient air with an air-air-heat exchanger and the arrangement of the storage material in such way to minimize the pressure losses and the own electricity consumption. The development is progressing in a structured way by studies, engineering works, TES-pilot plants, isothermal air flow test plant for the verification of the CFD-calculations, and since end of 2012 by the operation of a high temperature TES-module with all features of the large scale modules.
基金supported by the National Natural Science Foundation of China (Grant Nos.11072198,11102162)111 Project of China (GrantNo. B07050)
文摘Focusing on the aeroelastic stability of thin panel structure of airframe component such as engine nozzle of high-speed flight vehicles,a nonlinear aeroelastic model for a two-dimensional heated panel exposing both surfaces to the airflow with different aerodynamic pressures is established.The von Karman large deflection plate theory and the first-order piston theory are used in the formulation of aeroelastic motion.The critical conditions for aeroelastic stability and the stability boundaries are obtained using theoretical analysis and numerical computations,respectively.The results show that the panel is more prone to become unstable when its two surfaces are subject to aerodynamic loading simultaneously;only if the sum of the aerodynamic pressures on both surfaces of the panel satisfies flutter stability condition,can the panel be likely aeroelastically stable;compared with the general panel flutter problem that only one surface is exposed to the airflows,the present condition makes the panel become aeroelastically unstable at relatively small flight aerodynamic pressure.
基金Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51121004), and the Fundamental Research Funds for the Central Universities (No. HIT.BRETIV.201315), China
文摘Hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distributions of thermal and stress fields in the infrared window for hypersonic vehicles based on flowfield studies. A theoretical guidance is provided to evaluate the influence of aerodynamic heating and forces on infrared window materials. The aerodynamic heat flux from Mach 3 to Mach 6 flight at an altitude of 15 km in a standard atmosphere is obtained through flowfield analysis. The thermal and stress responses are then investigated under constant heat transfer coefficient boundary conditions for different Mach numbers. The numerical results show that the maximum stress is higher than the material strength at Mach 6, which means a failure of the material may occur. The maximum stress and temperatures are lower than the material strength and melting point under other conditions, so the material is safe.