In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the wat...In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.展开更多
Glaciers in the eastern Pamir are important for water resources and the social and economic development of the region.In the last 50 years,these glaciers have shrunk and lost ice mass due to climate change.In order to...Glaciers in the eastern Pamir are important for water resources and the social and economic development of the region.In the last 50 years,these glaciers have shrunk and lost ice mass due to climate change.In order to understand recent glacier dynamics in the region,a new inventory was compiled from Landsat TM/ETM+ images acquired in2009,free of clouds and with minimal snow cover on the glacierized mountains.The first glacier inventory of the area was also updated by digitizing glacier outlines from topographical maps that had been modified and verified using aerial photographs.Total glacier area decreased by 10.8%±1.1%,mainly attributed to an increase in air temperature,although precipitation,glacier size and topographic features also combined to affect the general shrinkage of the glaciers.The 19.3–21.4 km^3 estimated glacier mass loss has contributed to an increase in river runoff and water resources.展开更多
The fabrication of efficient catalysts to reduce nitrogen(N_(2))to ammonia(NH3)is a significant challenge for artificial N_(2) fixation under mild conditions.In this work,we demonstrated that the simultaneous introduc...The fabrication of efficient catalysts to reduce nitrogen(N_(2))to ammonia(NH3)is a significant challenge for artificial N_(2) fixation under mild conditions.In this work,we demonstrated that the simultaneous introduction of oxygen vacancies(OVs)and Mo dopants into Bi_(5)O_(7)Br nanosheets can significantly increase the activity for photocatalytic N_(2) fixation.The 1 mol% Mo-doped Bi_(5)O_(7)Br nanosheets exhibited an optimal NH_(3) generation rate of 122.9μmol g^(-1) h^(-1) and durable stability,which is attributed to their optimized conduction band position,suitable absorption edge,large number of light-switchable OVs,and improved charge carrier separation.This work provides a promising approach to design photocatalysts with light-switchable OVs for N_(2) reduction to NH_(3) under mild conditions,highlighting the wide application scope of nanostructured BiOBr-based photocatalysts as effective N_(2) fixation systems.展开更多
The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around th...The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around the campus. A completely randomized factorial experimental design and Duncan's multiple range tests were used to achieve the objectives. Three temperatures, i.e. 80, 90 and 100 ℃ and five frying time, i.e. 3, 6, 9, and 15 minutes with a 2 mm slice thickness were studied to determine the optimum condition and predict the moisture decrease. Results showed that the vacuum frying time in general affects the chips color and oil uptake significantly (p 〈 0.01) and correlated with the moisture decrease. The chips moisture content decline significantly after vacuum frying at 90 ℃ and 100 ℃ for 3 minutes. While for the 80 ℃ vacuum frying, the significant decrease of moisture occurred due to the increase of vacuum frying time from 3 to 6 minutes (p 〈 0.01). The optimum conditions for a 2 mm slice thickness chips making are vacuum frying at 100 ℃ for 3 minutes. The chips moisture lost followed generally a two-stage of falling rate pattern during vacuum frying, and each could be well predicted by an exponential equation (R2 = 0.99).展开更多
Airborne photographs can be expediently used in environmental monitoring; e.g., in the surveillance of the state of natural reserve areas, such as wetlands; or in the measurement and mapping of pollutants, such as oil...Airborne photographs can be expediently used in environmental monitoring; e.g., in the surveillance of the state of natural reserve areas, such as wetlands; or in the measurement and mapping of pollutants, such as oil spills on a lake or sea. A new and cost-effective platform of airborne remote sensing is the UAV (unmanned aerial vehicle) or drone. In this experimental work, aerial photos were made in Bakony Mountains using three UAVs equipped with small HD (high definition) cameras; resolution: 1,280 ~ 720 pixels. Within the framework of this work, a small lake was photographed, where the beginning of eutrophication was detected. This hardly can be observed from ground, however, it is visible on the aerial photos. The airborne surveillance of areas of ragweed (Ambrosia sp.) populations was also investigated. It was found that both UAVs are feasible for these tasks, and the application of these platforms for environmental monitoring is advantageous, especially in case of natural reserve areas since those are very silent and--contrary to big aircrafts and helicopters---do not disturb the ecology even in natural reserve areas and the people living there. Moreover, those could be operated in a very flexible and economic way, and the aerial photos taken are highly informative.展开更多
The text aims to investigate the relevance of the concept of"public space" and the continuous variations which have changed its meaning. Going beyond the concept of public space, the author can understand the semant...The text aims to investigate the relevance of the concept of"public space" and the continuous variations which have changed its meaning. Going beyond the concept of public space, the author can understand the semantic boundaries of this definition: Today, relational spaces and shared spaces are the forms with which people can express the concept of public space. The gradual spread of new forms of communication has transformed the static view of public space in a more dynamic condition, the distinction between square, street, garden has lost its meaning leaving space to fragments and residues. Contemporary public spaces are defined, as the residual places that come from the abandonment of industries. The large mono-functional voids, which originate from industrial dismantlement, should be strategically reconsidered as new shared public spaces, where the integration between different functions leads to reactivate new forms of re-using of built space.展开更多
Designing cost-effective and high-performance carbon-based oxygen reduction reaction(ORR)electrocatalysts is crucial in the development of Zn-air batteries(ZABs).In this study,a facile one-pot synthesis approach is en...Designing cost-effective and high-performance carbon-based oxygen reduction reaction(ORR)electrocatalysts is crucial in the development of Zn-air batteries(ZABs).In this study,a facile one-pot synthesis approach is engineered to construct Zn/Co-N-C carbonaceous polyhedrons interconnected with self-catalyzed-grown carbon nanotubes(CNTs)from zeolitic imidazolium frameworks linked with graphene oxide nanosheets.The special N-doped threedimensional(3 D)carbon matrix allows manipulating the exposure of active sites and the synergistic interaction between metal nanoparticles and CNTs.The as-synthesized catalyst features impressive ORR activity in 0.1 mol L^(-1)KOH(E_(1/2)=0.83 V)and 0.5 mol L^(-1)H_(2)SO_(4)(E_(1/2)=0.73 V),satisfactory cycling stability and methanol resistance comparable to those of the benchmark Pt/C catalyst(E_(1/2)=0.80 V in 0.1 mol L^(-1)KOH,E_(1/2)=0.75 V in 0.5 mol L^(-1)H_(2)SO_(4)).Furthermore,the asestablished ZAB demonstrates a competitive peak power density(90 mW cm^(-2))and prominent long-term stability,which are better than those of devices based on the commercial Pt/C catalyst(82 mW cm^(-2)).This work provides promising guidance for fabricating highly effective ORR catalysts with in situ formed CNTs,which can be applied in portable ZABrelated devices.展开更多
The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM...The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM), a gradient-based parameterization-analyzing method (GPAM), a response surface method (RSM) with zooming algorithm and a simple gradient method. By the use of blade parameterization method a transonic com- pressor rotor can be expressed by a set of polynomials, and then it enables us to transform coordinate-expressed blade data to parameter-expressed and then to reduce the number of parameters. With changing any one of the parameters and by applying grid generator and N.S. solver, we can obtain several groups of samples. Here only ten parameters were considered to search an optimized compressor rotor. As a result of optimization, the adiabatic efficiency was increased by 1.73%.展开更多
Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the con...Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein,a hierarchical 1T-MoS2/carbon nanosheet decorated Co1–xS/N-doped carbon(Co1–xS/NC@MoS2/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber. This nanofiber can transform in-situ into conductive N-doped carbon hollow fibers embedded with active Co1–xS nanoparticles, enabling the epitaxial growth of MoS2 nanosheets.Consequently, the Co1–xS/NC@MoS2/C composites achieve exceptional lithium/sodium-ion storage performance. Compared to MoS2/C microspheres and Co1–xS/NC hollow nanofibers alone, the Co1–xS/NC@MoS2/C hollow nanofibers deliver higher discharge capacities(1085.9 mAh g^-1 for lithium-ion batteries(LIBs) and 748.5 mAh g^-1 for sodium-ion batteries(SIBs) at 100 mA g^-1), better capacity retention(910 mAh g^-1 for LIBs and 636.5 mAh g^-1 for SIBs after 150 cycles at 100 mA g^-1), and increased cycling stability(407.2 mAh g^-1 after 1000 cycles for SIBs at 1000 m A g^-1). Furthermore, the kinetic analysis shows that the lithium/sodium-ion storage processes of the Co1–xS/NC@MoS2/C electrode are mainly controlled by pseudocapacitance behavior. The excellent electrochemical properties can thus be ascribed to the synergy of the MoS2/C nanosheets with the enlarged interlayer spacing, good conductivity of the carbon layers, and the Co1–xS nanoparticles embedded in the hollow nanofibers with extensive reaction sites.展开更多
This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength r...This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength requirements laid upon the root section design are contradictory, it is necessary to aerodynamically optimize the design within the limits given by the foremost strength requirements. The most limiting criterion of the static strength is the size of the blade cross-section, which is determined by the number of blades in a rotor and also by the shape and size of a blade dovetail. The aerodynamic design requires mainly the zero incidence angle at the inlet of a profile and in the ideal case ensures that the load does not exceed a limit load condition. Moreover, the typical root profile cascades are transonic with supersonic exit Math number, therefore, the shape of a suction side and a trailing edge has to respect transonic expansion of a working gas. In this paper, the two variants of root section profile cascades are compared and the aerodynamic qualities of both variants are verified using CFD simulation and two mutually independent experimental methods of measurements (optical and pneumatic).展开更多
文摘In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.
基金supported by the Chinese Academy of Sciences (Grant No.KZZD-EW-12-1)the National Natural Science Foundation (Grant No.41190084)+3 种基金the Ministry of Science and Technology of China (MOST) (Grant Nos.2013FY111400,2010DFA92720-23)an immediate past project from the MOST (Grant No.2006FY110200)provided by "Investigation on glacier resources and their change in China" (Grant No.2006FY110200)"Glacier change monitoring and its impact assessment research in west China" (Grant No.kzcx2-yw-301)
文摘Glaciers in the eastern Pamir are important for water resources and the social and economic development of the region.In the last 50 years,these glaciers have shrunk and lost ice mass due to climate change.In order to understand recent glacier dynamics in the region,a new inventory was compiled from Landsat TM/ETM+ images acquired in2009,free of clouds and with minimal snow cover on the glacierized mountains.The first glacier inventory of the area was also updated by digitizing glacier outlines from topographical maps that had been modified and verified using aerial photographs.Total glacier area decreased by 10.8%±1.1%,mainly attributed to an increase in air temperature,although precipitation,glacier size and topographic features also combined to affect the general shrinkage of the glaciers.The 19.3–21.4 km^3 estimated glacier mass loss has contributed to an increase in river runoff and water resources.
文摘The fabrication of efficient catalysts to reduce nitrogen(N_(2))to ammonia(NH3)is a significant challenge for artificial N_(2) fixation under mild conditions.In this work,we demonstrated that the simultaneous introduction of oxygen vacancies(OVs)and Mo dopants into Bi_(5)O_(7)Br nanosheets can significantly increase the activity for photocatalytic N_(2) fixation.The 1 mol% Mo-doped Bi_(5)O_(7)Br nanosheets exhibited an optimal NH_(3) generation rate of 122.9μmol g^(-1) h^(-1) and durable stability,which is attributed to their optimized conduction band position,suitable absorption edge,large number of light-switchable OVs,and improved charge carrier separation.This work provides a promising approach to design photocatalysts with light-switchable OVs for N_(2) reduction to NH_(3) under mild conditions,highlighting the wide application scope of nanostructured BiOBr-based photocatalysts as effective N_(2) fixation systems.
文摘The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around the campus. A completely randomized factorial experimental design and Duncan's multiple range tests were used to achieve the objectives. Three temperatures, i.e. 80, 90 and 100 ℃ and five frying time, i.e. 3, 6, 9, and 15 minutes with a 2 mm slice thickness were studied to determine the optimum condition and predict the moisture decrease. Results showed that the vacuum frying time in general affects the chips color and oil uptake significantly (p 〈 0.01) and correlated with the moisture decrease. The chips moisture content decline significantly after vacuum frying at 90 ℃ and 100 ℃ for 3 minutes. While for the 80 ℃ vacuum frying, the significant decrease of moisture occurred due to the increase of vacuum frying time from 3 to 6 minutes (p 〈 0.01). The optimum conditions for a 2 mm slice thickness chips making are vacuum frying at 100 ℃ for 3 minutes. The chips moisture lost followed generally a two-stage of falling rate pattern during vacuum frying, and each could be well predicted by an exponential equation (R2 = 0.99).
文摘Airborne photographs can be expediently used in environmental monitoring; e.g., in the surveillance of the state of natural reserve areas, such as wetlands; or in the measurement and mapping of pollutants, such as oil spills on a lake or sea. A new and cost-effective platform of airborne remote sensing is the UAV (unmanned aerial vehicle) or drone. In this experimental work, aerial photos were made in Bakony Mountains using three UAVs equipped with small HD (high definition) cameras; resolution: 1,280 ~ 720 pixels. Within the framework of this work, a small lake was photographed, where the beginning of eutrophication was detected. This hardly can be observed from ground, however, it is visible on the aerial photos. The airborne surveillance of areas of ragweed (Ambrosia sp.) populations was also investigated. It was found that both UAVs are feasible for these tasks, and the application of these platforms for environmental monitoring is advantageous, especially in case of natural reserve areas since those are very silent and--contrary to big aircrafts and helicopters---do not disturb the ecology even in natural reserve areas and the people living there. Moreover, those could be operated in a very flexible and economic way, and the aerial photos taken are highly informative.
文摘The text aims to investigate the relevance of the concept of"public space" and the continuous variations which have changed its meaning. Going beyond the concept of public space, the author can understand the semantic boundaries of this definition: Today, relational spaces and shared spaces are the forms with which people can express the concept of public space. The gradual spread of new forms of communication has transformed the static view of public space in a more dynamic condition, the distinction between square, street, garden has lost its meaning leaving space to fragments and residues. Contemporary public spaces are defined, as the residual places that come from the abandonment of industries. The large mono-functional voids, which originate from industrial dismantlement, should be strategically reconsidered as new shared public spaces, where the integration between different functions leads to reactivate new forms of re-using of built space.
基金supported by the National Natural Science Foundation of China(51872076 and U1804255)the Program for Innovative Research Team of Henan Scientific Committee(CXTD2014033)+1 种基金the Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province(194200510001)the Scientific and Technological Research Project of Henan province(212102210651)。
文摘Designing cost-effective and high-performance carbon-based oxygen reduction reaction(ORR)electrocatalysts is crucial in the development of Zn-air batteries(ZABs).In this study,a facile one-pot synthesis approach is engineered to construct Zn/Co-N-C carbonaceous polyhedrons interconnected with self-catalyzed-grown carbon nanotubes(CNTs)from zeolitic imidazolium frameworks linked with graphene oxide nanosheets.The special N-doped threedimensional(3 D)carbon matrix allows manipulating the exposure of active sites and the synergistic interaction between metal nanoparticles and CNTs.The as-synthesized catalyst features impressive ORR activity in 0.1 mol L^(-1)KOH(E_(1/2)=0.83 V)and 0.5 mol L^(-1)H_(2)SO_(4)(E_(1/2)=0.73 V),satisfactory cycling stability and methanol resistance comparable to those of the benchmark Pt/C catalyst(E_(1/2)=0.80 V in 0.1 mol L^(-1)KOH,E_(1/2)=0.75 V in 0.5 mol L^(-1)H_(2)SO_(4)).Furthermore,the asestablished ZAB demonstrates a competitive peak power density(90 mW cm^(-2))and prominent long-term stability,which are better than those of devices based on the commercial Pt/C catalyst(82 mW cm^(-2)).This work provides promising guidance for fabricating highly effective ORR catalysts with in situ formed CNTs,which can be applied in portable ZABrelated devices.
文摘The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM), a gradient-based parameterization-analyzing method (GPAM), a response surface method (RSM) with zooming algorithm and a simple gradient method. By the use of blade parameterization method a transonic com- pressor rotor can be expressed by a set of polynomials, and then it enables us to transform coordinate-expressed blade data to parameter-expressed and then to reduce the number of parameters. With changing any one of the parameters and by applying grid generator and N.S. solver, we can obtain several groups of samples. Here only ten parameters were considered to search an optimized compressor rotor. As a result of optimization, the adiabatic efficiency was increased by 1.73%.
基金This work was supported by the National Natural Science Foundation of China(51673117,21805193 and 51973118)Postdoctoral Science Foundation of China(2019M650212)+2 种基金Key R&D Program of Guangdong Province(2019B010929002 and 2019B010941001)Science and Technology Innovation Commission of Shenzhen(JCYJ20170817094628397,JCYJ20170818093832350,JCYJ20170818112409808,JCYJ20170818100112531,JCYJ20180507184711069,and JCYJ20180305125319991)The authors also thank the Materials and Devices Testing Center of Tsinghua University Shenzhen Graduate School.
文摘Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein,a hierarchical 1T-MoS2/carbon nanosheet decorated Co1–xS/N-doped carbon(Co1–xS/NC@MoS2/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber. This nanofiber can transform in-situ into conductive N-doped carbon hollow fibers embedded with active Co1–xS nanoparticles, enabling the epitaxial growth of MoS2 nanosheets.Consequently, the Co1–xS/NC@MoS2/C composites achieve exceptional lithium/sodium-ion storage performance. Compared to MoS2/C microspheres and Co1–xS/NC hollow nanofibers alone, the Co1–xS/NC@MoS2/C hollow nanofibers deliver higher discharge capacities(1085.9 mAh g^-1 for lithium-ion batteries(LIBs) and 748.5 mAh g^-1 for sodium-ion batteries(SIBs) at 100 mA g^-1), better capacity retention(910 mAh g^-1 for LIBs and 636.5 mAh g^-1 for SIBs after 150 cycles at 100 mA g^-1), and increased cycling stability(407.2 mAh g^-1 after 1000 cycles for SIBs at 1000 m A g^-1). Furthermore, the kinetic analysis shows that the lithium/sodium-ion storage processes of the Co1–xS/NC@MoS2/C electrode are mainly controlled by pseudocapacitance behavior. The excellent electrochemical properties can thus be ascribed to the synergy of the MoS2/C nanosheets with the enlarged interlayer spacing, good conductivity of the carbon layers, and the Co1–xS nanoparticles embedded in the hollow nanofibers with extensive reaction sites.
基金the Technology Agency of the Czech Republic,which supported this research under grants No.TA03020277 and TH02020057Institutional support RVO61388998
文摘This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength requirements laid upon the root section design are contradictory, it is necessary to aerodynamically optimize the design within the limits given by the foremost strength requirements. The most limiting criterion of the static strength is the size of the blade cross-section, which is determined by the number of blades in a rotor and also by the shape and size of a blade dovetail. The aerodynamic design requires mainly the zero incidence angle at the inlet of a profile and in the ideal case ensures that the load does not exceed a limit load condition. Moreover, the typical root profile cascades are transonic with supersonic exit Math number, therefore, the shape of a suction side and a trailing edge has to respect transonic expansion of a working gas. In this paper, the two variants of root section profile cascades are compared and the aerodynamic qualities of both variants are verified using CFD simulation and two mutually independent experimental methods of measurements (optical and pneumatic).