期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
吕梁山地区常绿植被物候的提取和分布差异 被引量:1
1
作者 王贝贝 周淑琴 +1 位作者 荆耀栋 宋晓静 《江西农业学报》 CAS 2021年第3期50-55,共6页
山西省吕梁山地区气候、地形多变,常绿植被分布较多,其物候对环境变化敏感,提取和研究常绿植被物候能为全球变化和常绿植被的其他研究提供基础。利用MODIS NDVI数据,通过Savitzky-Golay滤波和动态阈值法提取吕梁山常绿植被物候,并运用... 山西省吕梁山地区气候、地形多变,常绿植被分布较多,其物候对环境变化敏感,提取和研究常绿植被物候能为全球变化和常绿植被的其他研究提供基础。利用MODIS NDVI数据,通过Savitzky-Golay滤波和动态阈值法提取吕梁山常绿植被物候,并运用趋势分析法定量分析了植被物候在空间和地形的差异。结果表明:(1)吕梁山地区常绿植被生长季开始日期(SOS)在第95~130天之间,生长季结束日期(EOS)在第280~320天之间,生长季长度(LOS)在第160~230天之间。(2)研究区常绿植被物候与纬度关系密切,随着纬度由南向北升高,植被SOS显著推迟(R^(2)=0.9265,P<0.001),EOS显著提前(R^(2)=0.8656,P<0.01),LOS显著缩短(R^(2)=0.9620,P<0.001)。(3)常绿植被物候在地形上的差异明显。海拔升高,植被SOS显著推迟、EOS显著提前、LOS显著缩短;坡度变大,植被SOS显著推迟,EOS显著提前,LOS显著缩短;各坡向的植被物候差异明显,植被SOS最大相差2.6 d,植被EOS最大相差3.6 d,植被LOS最大相差5.2 d。所提取的吕梁山地区常绿植被物候与其他研究结果相近,植被物候在空间和地形上存在显著差异。 展开更多
关键词 常绿植被 物候提取 空间差异 MODIS NDVI数据 吕梁山地区
下载PDF
基于不同滤波的水稻物候期提取 被引量:5
2
作者 凌洋 耿利宁 +2 位作者 景元书 胡荣辰 孙啸 《科学技术与工程》 北大核心 2014年第35期16-22,共7页
基于2010年中分辩率成像光谱仪(moderate-resolution imaging specroradiometer,MODIS)数据,以江苏省为研究区域,采用不同信号滤波方法,对水稻物候期的提取方法进行了分析和研究。在获得水稻的增强型植被指数(enhanced uegetatisn index... 基于2010年中分辩率成像光谱仪(moderate-resolution imaging specroradiometer,MODIS)数据,以江苏省为研究区域,采用不同信号滤波方法,对水稻物候期的提取方法进行了分析和研究。在获得水稻的增强型植被指数(enhanced uegetatisn index,EVI)数据基础上,进行了HANTS(harmonic analysis of time series)滤波和小波变换滤波的对比分析,使用小波滤波重构后的数据结合Matlab软件进行了水稻物候期的格点化提取,并验证了结果的准确性。结论如下:二者都能较好的去除噪声,还原原始信息,但对云噪声污染较严重地区,小波滤波相比HANTS滤波效果更好,新的移栽期提取方法和小波滤波的物候期提取方法能够较为准确的反应真实的水稻物候情况,经站点数据检验,能很好地反应真实水稻物候情况。 展开更多
关键词 水稻物候提取 HANTS滤波 小波滤波 格点数据
下载PDF
植被物候遥感监测研究进展 被引量:6
3
作者 协子昂 张超 +4 位作者 冯绍元 张富仓 蔡焕杰 唐敏 孔纪迎 《遥感技术与应用》 CSCD 北大核心 2023年第1期1-14,共14页
植被物候信息是评价气候—植被交互影响、土地覆盖率以及生态系统年际生产力变化的关键指标。传统物候监测方法以目视观察为主,监测范围受限且人力物力消耗大。遥感技术作为近年来新兴的监测手段,具有监测范围大、信息获取便捷以及节省... 植被物候信息是评价气候—植被交互影响、土地覆盖率以及生态系统年际生产力变化的关键指标。传统物候监测方法以目视观察为主,监测范围受限且人力物力消耗大。遥感技术作为近年来新兴的监测手段,具有监测范围大、信息获取便捷以及节省人力物力等特点,其应用进一步推动了植被物候动态监测研究的发展。本文首先对近年来植被物候遥感监测流程进行梳理,明晰了现有的遥感物候监测体系;概述了可用于建立植被生长曲线遥感数据源,并对不同数据源的应用情境进行了讨论;总结了现有的曲线降噪算法及应用流程,对不同方法进行降噪处理时误差成因进行了分析;归纳了目前主要的植被物候提取方法;最后讨论了数据分辨率、植被物候阶段定义以及监测时效性等植被物候遥感监测中尚存的不确定性因素,并对未来植被物候遥感监测研究的主要方向进行了展望。 展开更多
关键词 植被物候 遥感监测 曲线降噪 物候提取
原文传递
Extracting Vegetation Phenology Metrics in Changbai Mountains Using an Improved Logistic Model 被引量:4
4
作者 LI Ming WU Zhengfang +1 位作者 QIN Lijie MENG Xiangjun 《Chinese Geographical Science》 SCIE CSCD 2011年第3期304-311,共8页
Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this m... Remotely sensing images are now available for monitoring vegetation dynamics over large areas.In this paper,an improved logistic model that combines double logistic model and global function was developed.Using this model with SPOT/NDVI data,three key vegetation phenology metrics,the start of growing season (SOS),the end of growing season (EOS) and the length of growing season (LOS),were extracted and mapped in the Changbai Mountains,and the relationship between the key phenology metrics and elevation were established.Results show that average SOS of forest,cropland and grassland in the Changbai Mountains are on the 119th,145th,and 133rd day of year,respectively.The EOS of forest and grassland are similar,with the average on the 280th and 278th,respectively.In comparison,average EOS of the cropland is relatively earlier.The LOS of forest is mainly from the 160th to 180th,that of the grassland extends from the 140th to the 160th,and that of cropland stretches from the 110th to the 130th.As the latitude increases for the same land cover in the study area,the SOS significantly delays and the EOS becomes earlier.The SOS delays approximately three days as the elevation increases 100 m in the areas with elevation higher than 900 m above sea level (a.s.l.).The EOS is slightly earlier as the elevation increases especially in the areas with elevation below 1200 m a.s.l.The LOS shortens approximately four days as the elevation increases 100 m in the areas with elevation higher than 900 m a.s.l.The relationships between vegetation phenology metrics and elevation may be greatly influenced by the land covers.Validation by comparing with the field data and previous research results indicates that the improved logistic model is reliable and effective for extracting vegetation phenology metrics. 展开更多
关键词 logistic model SPOT/NDVI phenology metrics Changbai Mountains
下载PDF
Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images 被引量:3
5
作者 Jing WANG Jing-feng HUANG +7 位作者 Xiu-zhen WANG Meng-ting JIN Zhen ZHOU Qiao-ying GUO Zhe-wen ZHAO Wei-jiao HUANG Yao ZHANG Xiao-dong SONG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2015年第10期832-844,共13页
Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of... Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we integrate the data of H J-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS) and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological param- eters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are the bottleneck but where complementary data are occasionally available. 展开更多
关键词 Phenological parameters INTERCALIBRATION Vegetation index H J-1 CCD Landsat-80LI
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部