期刊文献+
共找到670篇文章
< 1 2 34 >
每页显示 20 50 100
基于高低频特征增强和透射率修正的复杂图像去雾方法
1
作者 王士斌 郭嘉懿 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1138-1144,共7页
针对复杂图像中存在非均匀散射介质(如大气湍流、烟雾、雾霾等),导致光线在不同区域的传播和散射特性不同,较难准确恢复图像能见度的问题,提出一种基于高低频特征增强和透射率修正的复杂图像去雾方法.首先,基于奇异值分解和Gamma拐点校... 针对复杂图像中存在非均匀散射介质(如大气湍流、烟雾、雾霾等),导致光线在不同区域的传播和散射特性不同,较难准确恢复图像能见度的问题,提出一种基于高低频特征增强和透射率修正的复杂图像去雾方法.首先,基于奇异值分解和Gamma拐点校正,设计低频特征增强方法;其次,基于Shearlet变换分解和非线性变换,得到高频特征增强方法;再次,利用软抠图精化所估计的透射率,构建透射率修正策略;最后,融合上述3种方法,根据大气光值和精化透射率,完成图像去雾,分别增强高、低频特征后,将两者叠加,获得增强的去雾图像.经去雾图像的视觉感观和客观评价指标结果验证表明,该方法的去雾效果较好,能有效恢复复杂图像的细节信息,改善图像的整体视觉质量. 展开更多
关键词 低频特征增强 高频特征增强 透射率估计 透射率精化 复杂图像去雾
下载PDF
基于多分支空谱特征增强的高光谱图像分类 被引量:1
2
作者 李铁 李文许 +1 位作者 王军国 高乔裕 《液晶与显示》 CAS CSCD 北大核心 2024年第6期844-855,共12页
为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和... 为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和深层空间特征信息,并引入注意力机制抑制噪声干扰。其次,设计一种改进多尺度空谱特征提取融合模块及结合双池化和空洞卷积的空间特征增强模块实现空谱特征增强,减少模型参数量和提高分类性能。最后,用全局平均池化层代替全连接层,进一步降低参数量,缓解模型过拟合问题。实验结果表明,在Indian Pines(10%训练样本)、Pavia University (5%训练样本)和Salinas(1%训练样本)数据集分别取得了0.990 7、0.997 5和0.994 7的总体分类精度。SSFE-MBACNN不仅能充分利用空谱特征信息,而且在有限样本下也取得了优秀的分类性能,明显高于其他对比方法。 展开更多
关键词 高光谱图像分类 特征增强 多分支特征提取 注意力机制 多尺度特征 双池化 空洞卷积
下载PDF
AR-MED共振特征增强的风电齿轮箱故障诊断
3
作者 孙抗 史晓玉 +1 位作者 赵来军 杨明 《组合机床与自动化加工技术》 北大核心 2024年第8期163-167,174,共6页
针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,... 针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,使用共振稀疏分解算法(RSSD)将振动信号分解成含有噪声和谐波成分的高共振分量和含有故障冲击成分的低共振分量;其次,对低共振分量使用自回归最小熵解卷积运算,增强低共振分量中微弱的周期性冲击成分;最后,构建自回归最小熵解卷积共振特征增强的1DCNN模型,将分解得到的谐波分量和周期性冲击分量进行特征融合以及有针对的训练和分类。实验结果表明,与现有故障诊断模型相比,所提方法在提取风电齿轮箱的故障特征信息以及提高故障诊断精度方面具有有效性和优越性。 展开更多
关键词 共振稀疏分解 自回归最小熵解卷积 特征增强 一维卷积神经网络 风电齿轮箱
下载PDF
基于关键特征增强的金融长文本事件分类
4
作者 王洁 李旭晖 《情报工程》 2024年第3期104-113,共10页
[目的/意义]为了解决长文本模型输入长度限制问题,通过抽取事件关键句和事件关键词,对长文本进行关键特征增强,以提高模型的特征表示能力。[方法/过程]基于关键特征增强的模型,在原文的基础上利用TextRank算法抽取事件关键句,并利用TF-... [目的/意义]为了解决长文本模型输入长度限制问题,通过抽取事件关键句和事件关键词,对长文本进行关键特征增强,以提高模型的特征表示能力。[方法/过程]基于关键特征增强的模型,在原文的基础上利用TextRank算法抽取事件关键句,并利用TF-IDF算法抽取事件关键词,将二者作为关键特征对长文本进行特征增强,再利用BERT和Self-Attention模型进行特征的进一步提取,最后进行事件分类。[局限]模型仅在金融领域事件分类上进行实验,可以考虑在其他领域内也进行实验并进一步验证模型效果。[结果/结论]在金融长新闻事件分类数据集上,提出的模型准确率达到88.40%,比基准模型提升了2个以上的百分点,表明了模型的有效性。 展开更多
关键词 事件分类 长文本分类 关键特征 特征增强 自注意力机制
下载PDF
面向超分辨率重建的层次间局部特征增强网络
5
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 超分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
下载PDF
时域流形特征增强在数控机床轴承故障诊断中的应用 被引量:1
6
作者 黄日进 《机械研究与应用》 2024年第1期160-162,169,共4页
以数控机床轴承的时域振动信号为研究对象,提出一种基于流形学习的特征增强方法。首先,将采集信号的时间序列进行相空间重构,通过计算子相空间的信息熵来构建信号在特征空间中的表示,并以流形距离作为原始信号来集中不同故障类型的度量... 以数控机床轴承的时域振动信号为研究对象,提出一种基于流形学习的特征增强方法。首先,将采集信号的时间序列进行相空间重构,通过计算子相空间的信息熵来构建信号在特征空间中的表示,并以流形距离作为原始信号来集中不同故障类型的度量。然后,使用等距特征映射算法求取信号在特征空间中同胚的低维流形,其结果可用于对故障类型的分类判别。经实例数据集的验证分析发现,信息熵—等距特征映射变换能够在低维特征空间表达并强化轴承时域信号的故障类型特征,可有效应用于数控机床轴承单一和复合故障场景的设备运行诊断。 展开更多
关键词 特征增强 流形学习 数控机床轴承 故障诊断 等距特征映射
下载PDF
多尺度注意力特征增强融合的红外小目标检测新网络
7
作者 贾桂敏 程羽 齐孟飞 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期90-98,共9页
为提高红外成像中小目标检测的性能,提高低空空域监管能力,提出一种基于多尺度注意力特征增强融合的红外小目标检测新网络。首先,使用Resnet34提取红外图像的多尺度特征;其次,使用多尺度空间注意力特征增强模块(MFEM)来提高特征提取能力... 为提高红外成像中小目标检测的性能,提高低空空域监管能力,提出一种基于多尺度注意力特征增强融合的红外小目标检测新网络。首先,使用Resnet34提取红外图像的多尺度特征;其次,使用多尺度空间注意力特征增强模块(MFEM)来提高特征提取能力;然后,在逐级上采样过程中使用双通道注意力特征融合模块(DFFM),融合语义信息和细节信息,以更好地保护红外小目标的特征;最后,与其他方法对比,并以地/空红外弱小飞机目标视频序列检测为例测试真实场景。结果表明:新方法与现有方法相比,交互比(IoU)、F值和漏检率(FNR)的评分均获得改进;通过多尺度注意力特征增强融合可准确地定位到目标并生成精细的分割结果;MFEM能够同时利用多尺度上下文信息和空间注意力机制来突出红外小目标;DFFM通过给不同通道特征的集合赋予权重,得到最合适的特征图进行特征融合,从而提高检测性能。 展开更多
关键词 红外图像 小目标检测 特征增强 特征融合 注意力机制
下载PDF
基于注意力融合特征增强的座舱表情识别模型
8
作者 罗玉涛 郭丰瑞 《汽车工程》 EI CSCD 北大核心 2024年第9期1697-1706,1686,共11页
针对智能座舱驾驶员表情识别深度学习模型准确率和实时性难以兼顾的问题,提出一种基于注意力融合与特征增强网络的表情识别模型EmotionNet。模型以GhostNet为基础,在特征提取模块内利用两个检测分支融合坐标注意力和通道注意力机制,实... 针对智能座舱驾驶员表情识别深度学习模型准确率和实时性难以兼顾的问题,提出一种基于注意力融合与特征增强网络的表情识别模型EmotionNet。模型以GhostNet为基础,在特征提取模块内利用两个检测分支融合坐标注意力和通道注意力机制,实现注意力机制互补与对重要特征的全方位关注;建立特征增强颈部网络以融合不同尺度特征信息;最终通过头部网络实现不同尺度特征信息决策级融合。在训练中则引入迁移学习思想和中心损失函数以进一步提高模型的识别准确性。在RAF-DB和KMU-FED数据集实验中,模型分别取得85.23%和99.95%识别准确率,并达到59.89 FPS的识别速度。EmotionNet平衡了识别准确率和实时性,达到了较为先进的水平并具备一定的智能座舱表情识别任务的适用性。 展开更多
关键词 智能座舱 表情识别 注意力机制 特征增强网络
下载PDF
基于数据与特征增强的自监督图表示学习方法
9
作者 许云峰 范贺荀 《计算机工程与应用》 CSCD 北大核心 2024年第17期148-157,共10页
图表示学习在处理图数据结构中起着非常重要的作用,但它面临着严重依赖于标记信息的挑战。为了克服这一挑战,提出了一种新的自监督图表示学习框架,通过使用对比学习方法,融合原始图的结构与属性以及频谱的高低频信息,在保留节点信息的... 图表示学习在处理图数据结构中起着非常重要的作用,但它面临着严重依赖于标记信息的挑战。为了克服这一挑战,提出了一种新的自监督图表示学习框架,通过使用对比学习方法,融合原始图的结构与属性以及频谱的高低频信息,在保留节点信息的基础上进行增强。同时,利用残差融合机制和无偏特征增强方法,在保证特征有效性的同时进一步减少增强样本的偏差。此外,在对比部分估计负样本为真的概率,并使用权重来度量负样本的硬度和相似度。通过在3个公开数据集上实验证明,在节点分类的下游任务中表现不仅优于当前最先进的无监督方法,而且还在多数任务中超过了以往的有监督方法。 展开更多
关键词 自监督学习 图对比学习 特征增强 节点分类 图表示学习
下载PDF
基于Gabor滤波器的事件流特征增强及事件相机对象识别
10
作者 周茜 郑鹏 《仪表技术与传感器》 CSCD 北大核心 2024年第4期76-80,共5页
基于Gabor滤波器的事件驱动卷积是仿生分层脉冲神经网络中常用的事件相机对象特征提取方法。为提高该类网络事件相机对象特征提取能力,提出基于Gabor滤波器的事件流特征增强算法,并应用于奖励调节STDP规则的脉冲神经网络事件相机对象识... 基于Gabor滤波器的事件驱动卷积是仿生分层脉冲神经网络中常用的事件相机对象特征提取方法。为提高该类网络事件相机对象特征提取能力,提出基于Gabor滤波器的事件流特征增强算法,并应用于奖励调节STDP规则的脉冲神经网络事件相机对象识别系统。算法首先将事件流按时间窗口划分为事件流片段,然后提取各时间窗口内的事件流片段特征,同时增强事件数量较多的时间窗口内特征。并基于奖励调节STDP规则帮助网络学习诊断性特征。采用增强算法的网络在MNIST-DVS数据集上的分类精度优于未采用增强算法的网络,并且对于较短的事件流输入也有很好的分类能力。该事件流特征增强算法能够提高基于Gabor滤波器的事件驱动卷积对事件相机对象的特征提取能力。 展开更多
关键词 事件相机 对象识别 特征增强 GABOR滤波器 奖励调节STDP
下载PDF
特征增强与残差重塑的多重一致性约束半监督视频动作检测
11
作者 胡正平 张琦明 +2 位作者 王雨露 张和浩 邸继锐 《模式识别与人工智能》 EI CSCD 北大核心 2024年第5期398-409,共12页
一致性正则化半监督视频动作检测方法对原始数据和增广数据进行特征表示时容易引起两类数据间判别域偏差,导致判别结果无法拟合.针对该问题,文中提出特征增强与残差重塑的多重一致性约束半监督视频动作检测方法.首先,将基础动作特征描... 一致性正则化半监督视频动作检测方法对原始数据和增广数据进行特征表示时容易引起两类数据间判别域偏差,导致判别结果无法拟合.针对该问题,文中提出特征增强与残差重塑的多重一致性约束半监督视频动作检测方法.首先,将基础动作特征描述子在时空维进行连续性增强编码,获取视频动作理解中至关重要的上下文信息.然后,在通过残差特征重塑模块获得多尺度残差信息的同时进行特征重塑.为了降低不同数据间的判别偏差,分别从分类特征与动作定位特征角度对原始数据和增广数据施加多重一致性约束,实现模型对增广数据和原始数据判别结果和特征表示的匹配.最后,在JHMDB-21、UCF101-24数据集上的实验表明,文中方法能有效提高少样本标记条件下视频动作检测准确度,具有较强的竞争力. 展开更多
关键词 半监督学习 视频动作检测 特征增强 多重一致性约束
下载PDF
基于特征增强和分组模块的车型精细识别
12
作者 郑秋梅 曹文龙 王风华 《计算机与数字工程》 2024年第5期1406-1411,共6页
针对车型种类多、差异小,模型复杂,识别精度低的问题,提出一种基于特征增强和分组模块的车型精细识别方法,在ResNet网络基础上改进,在卷积块中加入多尺度通道域和空间域的注意力机制,增强对重要的特征提取,并将多通道特征图进行分组,根... 针对车型种类多、差异小,模型复杂,识别精度低的问题,提出一种基于特征增强和分组模块的车型精细识别方法,在ResNet网络基础上改进,在卷积块中加入多尺度通道域和空间域的注意力机制,增强对重要的特征提取,并将多通道特征图进行分组,根据分组损失函数不断优化分组,通过加权方式结合KL(Kullback-Leibler)散度损失函数和交叉熵损失函数,有助于网络学习类内差异小、类间差异大的特征。该方法在Stanford cars-196数据集和自制数据集上进行测试,验证了所提模型的有效性。 展开更多
关键词 车型精细识别 多尺度 注意力机制 特征增强 损失函数
下载PDF
基于自适应空间特征增强的多视图深度估计
13
作者 魏东 刘欢 +3 位作者 张潇瀚 李昌恺 孙天翼 张子优 《系统仿真学报》 CAS CSCD 北大核心 2024年第1期110-119,共10页
为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度... 为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度特征提取模块,获取到具有全局上下文信息和位置信息的多尺度特征图像。通过残差学习网络对深度图进行优化,防止多次卷积操作出现重建边缘模糊的问题。通过分类的思想构建focal loss函数增强网络模型的判断能力。由实验结果可知,该算法在DTU(technical university of denmark)数据集上和CasMVSNet(Cascade MVSNet)算法相比,在整体精度误差、运行时间、显存资源占用上分别降低了14.08%、72.15%、4.62%。在Tanks and Temples数据集整体评价指标Mean上该模型优于其他算法,证明提出的基于自适应空间特征增强的多视图深度估计算法的有效性。 展开更多
关键词 多视图深度估计 自适应空间特征增强 残差学习网络 卷积操作 focal loss函数
下载PDF
细微特征增强的多级联合聚类跨模态行人重识别算法
14
作者 范馨月 张阔 +1 位作者 张干 李嘉辉 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期94-103,共10页
目前跨模态行人重识别研究注重于通过身份标签在全局特征或局部特征上提取模态共享特征来减少模态差异,但却忽视了具有辨别力的细微特征。为此提出了一种基于特征增强的聚类学习网络,该网络通过全局和局部特征来挖掘并增强不同模态的细... 目前跨模态行人重识别研究注重于通过身份标签在全局特征或局部特征上提取模态共享特征来减少模态差异,但却忽视了具有辨别力的细微特征。为此提出了一种基于特征增强的聚类学习网络,该网络通过全局和局部特征来挖掘并增强不同模态的细微特征,并结合多级联合聚类学习策略,最小化模态差异和类内变化。针对训练数据设计了随机颜色转换模块,在图像输入端增加模态之间的交互,以克服颜色偏差的影响。通过在公共数据集上进行实验,验证了所提方法的有效性,其中在SYSU-MM01数据集的全搜索模式下Rank-1和mAP分别达到了70.52%和64.02%;在RegDB数据集的V2I检索模式下Rank-1和mAP分别达到了88.88%和80.93%。 展开更多
关键词 行人重识别 跨模态 随机颜色转换 细微特征增强 多级联合聚类学习
下载PDF
基于特征增强及多层次融合的火灾火焰检测
15
作者 赵杰 汪洪法 吴凯 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第1期93-99,共7页
为提升火灾火焰识别检测方法性能,将传统图像处理与神经网络结合,提出1种基于特征增强及多层次融合的轻量级火灾火焰检测模型。模型利用多种色彩空间转换算法增强火焰特征信息,并设计双阶段多层次特征提取融合结构,配合空间注意力机制... 为提升火灾火焰识别检测方法性能,将传统图像处理与神经网络结合,提出1种基于特征增强及多层次融合的轻量级火灾火焰检测模型。模型利用多种色彩空间转换算法增强火焰特征信息,并设计双阶段多层次特征提取融合结构,配合空间注意力机制对火焰信息由粗到精进行提取;同时,针对火灾火焰特点,引入由浅到深逐步融合的自适应多尺度融合结构,提升对不同阶段火灾目标的检测精度。研究结果表明:本文模型可有效提升火灾火焰的检测效果,且具有更高的稳定性和鲁棒性,可准确高效地实现火灾火焰检测。研究结果可为现有火灾检测设备提供更准确的识别结果,从而更好地预防火灾事故发生。 展开更多
关键词 火灾火焰检测 神经网络 特征增强 多层次融合 自适应多尺度
下载PDF
融合概率类别特征增强的短文本分类
16
作者 廖列法 李奎 姚秀 《计算机工程与设计》 北大核心 2024年第7期2074-2081,共8页
对短文本所含信息量缺乏而导致分类准确度难以提升的问题进行研究,提出一种融合概率类别特征增强的短文本分类网络模型FT_BDCNN。将N-gram处理后产生的N元词典通过TF-IDF分离出具有概率类别区分度的特征信息(FT模块);将向量化表示后的... 对短文本所含信息量缺乏而导致分类准确度难以提升的问题进行研究,提出一种融合概率类别特征增强的短文本分类网络模型FT_BDCNN。将N-gram处理后产生的N元词典通过TF-IDF分离出具有概率类别区分度的特征信息(FT模块);将向量化表示后的文本信息输入到改进后的特征提取模块中;将两个模块的输出进行特征融合,完成文本分类。实验结果表明,所提模型在THUCNews数据集上的F1值达到91.91%。FT模块可以与现有分类模型进行融合,提升模型的分类性能。 展开更多
关键词 类别特征增强 短文本 双池化 特征融合 统计算法 快速分类 深度学习
下载PDF
一种基于多模态特征增强网络的抑郁症检测方法
17
作者 赵小明 范慧婷 张石清 《软件工程》 2024年第10期68-73,共6页
针对传统的多模态融合方法在抑郁症检测中忽略了模态之间的交互性、未能充分提取出更全面的特征表示的问题,本研究提出一种基于多模态特征增强网络的抑郁症检测方法,该方法有效地集成了视频、音频和远程光电容积脉搏(photoplethysmograp... 针对传统的多模态融合方法在抑郁症检测中忽略了模态之间的交互性、未能充分提取出更全面的特征表示的问题,本研究提出一种基于多模态特征增强网络的抑郁症检测方法,该方法有效地集成了视频、音频和远程光电容积脉搏(photoplethysmographic,rPPG)信号3种模态,通过模态间Transformer、模态内Transformer和多头自注意力机制,共同学习输入模态序列每个时间步的模态内和模态间的动态关系,达到了特征增强的目的。最终,拼接3个模态增强后的特征获得全面特征表示。在AVEC2013公共数据集上的实验结果显示,该方法的平均绝对误差为7.07,优于单模态抑郁症检测,表明该方法有效促进了模态之间的交互,并实现了特征增强,在自动抑郁症检测任务中展现出显著的有效性。 展开更多
关键词 多模态 深度学习 抑郁症检测 卷积神经网络 特征增强 多模态融合
下载PDF
基于高低频特征增强算法的室内场景三维重建仿真
18
作者 郑晓倩 《宁波工程学院学报》 2024年第3期117-123,共7页
为了提高室内设计效率和质量,提出了一种基于高低频特征增强算法的室内场景三维重建仿真方法。利用小波变换算法提取室内场景单图像高低频特征,通过加权引导滤波算法增强高低频特征图像;采用深度神经网络,预测图像的分割图和深度图,并... 为了提高室内设计效率和质量,提出了一种基于高低频特征增强算法的室内场景三维重建仿真方法。利用小波变换算法提取室内场景单图像高低频特征,通过加权引导滤波算法增强高低频特征图像;采用深度神经网络,预测图像的分割图和深度图,并结合长短时记忆网络估计室内场景单图像平面参数。然后整合分割图、深度图与平面参数,实现三维重建。实验结果表明:该方法可有效提取室内场景单图像高低频特征,增强高低频特征图像和提升图像清晰度;三维重建均方归一化误差最高值为0.15。 展开更多
关键词 高低频特征增强算法 室内场景 单图像 分段平面 三维重建
下载PDF
基于特征增强和语义相关性匹配的图像文本检索方法 被引量:1
19
作者 陈佳 张鸿 《计算机应用》 CSCD 北大核心 2024年第1期16-23,共8页
为实现图像文本检索中图像与文本的精确语义连接,提出一种基于特征增强和语义相关性匹配(FESCM)的图像文本检索方法。首先,通过特征增强表示模块,引入多头自注意力机制增强图像区域特征和文本单词特征,以减少冗余信息对图像区域和文本... 为实现图像文本检索中图像与文本的精确语义连接,提出一种基于特征增强和语义相关性匹配(FESCM)的图像文本检索方法。首先,通过特征增强表示模块,引入多头自注意力机制增强图像区域特征和文本单词特征,以减少冗余信息对图像区域和文本单词对齐的干扰;其次,通过语义相关性匹配模块,不仅利用局部匹配捕获局部显著对象之间的对应相关性,还把图像背景信息融入图像全局特征,利用全局匹配实现精确的全局语义相关性;最后,通过局部匹配分数和全局匹配分数获取图像和文本的最终匹配分数。实验结果表明,基于FESCM的图像文本检索方法在Flickr8k和Flickr30k基准数据集上的召回率总值比扩展的视觉语义嵌入方法分别提升了5.7和7.5个百分点,在MS-COCO数据集比双流层次相似度推理方法提升了3.7个百分点。因此该方法可以有效提高图像文本检索的准确度,实现图像与文本的语义连接。 展开更多
关键词 图像文本检索 特征增强表示 多头自注意力机制 语义相关性匹配
下载PDF
基于关键特征增强机制的3D人脸识别 被引量:1
20
作者 王奇 钱伟中 +1 位作者 雷航 王旭鹏 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期252-258,共7页
3D人脸识别是计算机视觉领域的重要组成部分,Pointnet依靠深度学习解决了点云的无序性,实现了3D点云的全局特征提取,但由于点云数据缺乏细节纹理,仅靠全局特征很难实现复杂情况下的人脸识别。针对以上问题,基于Pointnet提出了一种局部... 3D人脸识别是计算机视觉领域的重要组成部分,Pointnet依靠深度学习解决了点云的无序性,实现了3D点云的全局特征提取,但由于点云数据缺乏细节纹理,仅靠全局特征很难实现复杂情况下的人脸识别。针对以上问题,基于Pointnet提出了一种局部特征描述子,用于描述点云局部空间的几何特征,并引入关键特征增强机制,通过特征概率分布增强人脸关键信息,该机制能减少不必要特征对任务的干扰,有效提升模型的准确率。在公共数据集CASIA-3D、Lock3DFace、Bosphorus上进行实验测试,结果表明该方法能很好地应对表情变化、部分遮挡以及头部姿态的干扰,在弱光环境下其准确率高于RP-Net 1.1%,并具有良好的实时性。 展开更多
关键词 3D人脸识别 深度学习 局部特征描述子 特征增强 点云数据
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部