本文提出了一种将特征生成和长短期记忆(long short term memory, LSTM)模型相结合的网络流量分类方法。该方法采用矩阵乘法特征生成方式,分析对比了不同特征生成方法的分类性能。通过实验比较了原数据和特征数据在分类问题上的准确性,...本文提出了一种将特征生成和长短期记忆(long short term memory, LSTM)模型相结合的网络流量分类方法。该方法采用矩阵乘法特征生成方式,分析对比了不同特征生成方法的分类性能。通过实验比较了原数据和特征数据在分类问题上的准确性,并比较了卷积神经网络(convolutional neural network, CNN)和本文方法用于网络流分类的效果。在统计特征时采用核函数,使其可以适应LSTM输入维度,获得更佳的分类效果。对真实网络流数据的实验结果表明,本文方法在细分类中的准确度可达93.9%,而在粗分类任务中可达99.2%,其性能明显优于现有其他分类方法。展开更多
针对传统特征工程中需要大量专家经验和人力的不足,研究了基于特征生成方法的Android恶意软件检测方法。基于UC Berkeley的ExploreKit自动特征生成方法,通过对原始特征计算获得大量候选特征,根据候选特征的元特征预测其性能并进行评估排...针对传统特征工程中需要大量专家经验和人力的不足,研究了基于特征生成方法的Android恶意软件检测方法。基于UC Berkeley的ExploreKit自动特征生成方法,通过对原始特征计算获得大量候选特征,根据候选特征的元特征预测其性能并进行评估排序,使用贪心算法从中选出能够提升模型性能的新特征。从APK中提取了敏感API、危险权限等多种特征,在根据信息增益对特征进行筛选后,输入到特征生成框架中,使用C4.5、SVM和随机森林等作为分类模型。实验证明,该方法使错误率平均降低了24.6%,准确率达到了96.5%,曲线下面积(Area Under Curve,AUC)达到了0.99。展开更多
文摘本文提出了一种将特征生成和长短期记忆(long short term memory, LSTM)模型相结合的网络流量分类方法。该方法采用矩阵乘法特征生成方式,分析对比了不同特征生成方法的分类性能。通过实验比较了原数据和特征数据在分类问题上的准确性,并比较了卷积神经网络(convolutional neural network, CNN)和本文方法用于网络流分类的效果。在统计特征时采用核函数,使其可以适应LSTM输入维度,获得更佳的分类效果。对真实网络流数据的实验结果表明,本文方法在细分类中的准确度可达93.9%,而在粗分类任务中可达99.2%,其性能明显优于现有其他分类方法。
文摘针对传统特征工程中需要大量专家经验和人力的不足,研究了基于特征生成方法的Android恶意软件检测方法。基于UC Berkeley的ExploreKit自动特征生成方法,通过对原始特征计算获得大量候选特征,根据候选特征的元特征预测其性能并进行评估排序,使用贪心算法从中选出能够提升模型性能的新特征。从APK中提取了敏感API、危险权限等多种特征,在根据信息增益对特征进行筛选后,输入到特征生成框架中,使用C4.5、SVM和随机森林等作为分类模型。实验证明,该方法使错误率平均降低了24.6%,准确率达到了96.5%,曲线下面积(Area Under Curve,AUC)达到了0.99。