高精度的短期电力负荷预测可以保证电力系统调度决策的准确性、缓解电力供需矛盾、保障电力系统运行的安全。由于短期电力负荷预测受气象、历史信息等因素影响且具有很强不确定性,因此对短期负荷预测进行精准的预测较为困难。为实现对...高精度的短期电力负荷预测可以保证电力系统调度决策的准确性、缓解电力供需矛盾、保障电力系统运行的安全。由于短期电力负荷预测受气象、历史信息等因素影响且具有很强不确定性,因此对短期负荷预测进行精准的预测较为困难。为实现对日前电力负荷进行概率密度预测,提出一种基于引入注意力机制的卷积双向长短期记忆分位数回归网络(Convolutional bidirectional long short-term memory network with attention for quantile regression,QR-CBA)特征解耦框架。首先,将输入特征分为4个分支并通过解耦神经网络对其进行训练,以有效提高神经网络的计算效率和预测精度;然后,采用核密度估计(Kernel density estimation,KDE)方法作为后处理技术将预测结果生成为概率密度曲线,以有效量化预测的不确定性。以某公开负荷数据集作为实例进行验证,结果表明,所提方法的日前点预测精度达到了96.884%,与对比预测模型相比精度明显提高,区间预测的连续排名概率得分(Continuous ranked probability score,CRPS)与对比预测模型相比明显降低。以上对比实验结果说明所提预测方法具有更高的预测精度和确定性。展开更多
文摘高精度的短期电力负荷预测可以保证电力系统调度决策的准确性、缓解电力供需矛盾、保障电力系统运行的安全。由于短期电力负荷预测受气象、历史信息等因素影响且具有很强不确定性,因此对短期负荷预测进行精准的预测较为困难。为实现对日前电力负荷进行概率密度预测,提出一种基于引入注意力机制的卷积双向长短期记忆分位数回归网络(Convolutional bidirectional long short-term memory network with attention for quantile regression,QR-CBA)特征解耦框架。首先,将输入特征分为4个分支并通过解耦神经网络对其进行训练,以有效提高神经网络的计算效率和预测精度;然后,采用核密度估计(Kernel density estimation,KDE)方法作为后处理技术将预测结果生成为概率密度曲线,以有效量化预测的不确定性。以某公开负荷数据集作为实例进行验证,结果表明,所提方法的日前点预测精度达到了96.884%,与对比预测模型相比精度明显提高,区间预测的连续排名概率得分(Continuous ranked probability score,CRPS)与对比预测模型相比明显降低。以上对比实验结果说明所提预测方法具有更高的预测精度和确定性。