There are many extant endemic plants in China, which were widely distributed in the North Hemisphere during Tertiary. The global cooling during the Tertiary caused a series of narrow distribution regions of the plants...There are many extant endemic plants in China, which were widely distributed in the North Hemisphere during Tertiary. The global cooling during the Tertiary caused a series of narrow distribution regions of the plants. Quaternary glaciation invaded most regions of North America and Eurasia where severe destruction was imposed onto vegetation. However, such destruction was lessened in China largely because of specific topographic and geographical and obviously, a number of other conditions accounted for an unusual refugee camp for the relics of plants in China, among which lots of endemic taxa exist. Recently, Chinese endemic species, such as Metaseqouia, Eucommia , have been employed to conduct multi_disciplinary comprehensive studies so as to analyze Tertiary climate changes quantitatively. Meanwhile, a rigorous method, i.e. climate analysis of endemic species (CAES) has come to maturation. This method is characteristic of some generality because it is supposed to be applicable to the endemic species in other regions of the world. CAES is involved in the following aspects: 1. Conduct multidisciplinary studies on living and fossil species of endemic plants and trace their evolutionary courses. 2. Compare fossil species with living one and clarify which is the nearest living relative (NLR) to fossil counterpart. 3. Fossils and their living counterparts (NLR) are supposed to have similar ecological requirements to meet their life cycles. 4. Investigate the geographic distribution of living and fossil plants within the same taxa and ascertain the dynamic changes of their distributions in geological age. 5. Analyze climate factors in the distribution of specific endemic taxa and obtain the data of climatic characters which are suitable for reconstruction of paleoclimate where fossil counterparts lived. 6. Further study the physio_ecology of living species and determinate paleoclimate where fossil counterparts lived. 7. Integrate analysis of the data from steps 4, 5 and 6, and quantitatively reconstruct the climate where fossil and living plants survive.展开更多
卷瓣重楼Paris undulatis H.Li et V.G.Soukup为中国重楼属植物特有种,然而该种从发表至今,关于其是否为峨眉山原产、是否为峨眉山特有、野生种群是否已灭绝等问题仍无定论。本文通过资源调查、分类学鉴定,并结合IUCN的濒危物种分类标...卷瓣重楼Paris undulatis H.Li et V.G.Soukup为中国重楼属植物特有种,然而该种从发表至今,关于其是否为峨眉山原产、是否为峨眉山特有、野生种群是否已灭绝等问题仍无定论。本文通过资源调查、分类学鉴定,并结合IUCN的濒危物种分类标准对卷瓣重楼进行了评价,澄清了上述问题。展开更多
文摘There are many extant endemic plants in China, which were widely distributed in the North Hemisphere during Tertiary. The global cooling during the Tertiary caused a series of narrow distribution regions of the plants. Quaternary glaciation invaded most regions of North America and Eurasia where severe destruction was imposed onto vegetation. However, such destruction was lessened in China largely because of specific topographic and geographical and obviously, a number of other conditions accounted for an unusual refugee camp for the relics of plants in China, among which lots of endemic taxa exist. Recently, Chinese endemic species, such as Metaseqouia, Eucommia , have been employed to conduct multi_disciplinary comprehensive studies so as to analyze Tertiary climate changes quantitatively. Meanwhile, a rigorous method, i.e. climate analysis of endemic species (CAES) has come to maturation. This method is characteristic of some generality because it is supposed to be applicable to the endemic species in other regions of the world. CAES is involved in the following aspects: 1. Conduct multidisciplinary studies on living and fossil species of endemic plants and trace their evolutionary courses. 2. Compare fossil species with living one and clarify which is the nearest living relative (NLR) to fossil counterpart. 3. Fossils and their living counterparts (NLR) are supposed to have similar ecological requirements to meet their life cycles. 4. Investigate the geographic distribution of living and fossil plants within the same taxa and ascertain the dynamic changes of their distributions in geological age. 5. Analyze climate factors in the distribution of specific endemic taxa and obtain the data of climatic characters which are suitable for reconstruction of paleoclimate where fossil counterparts lived. 6. Further study the physio_ecology of living species and determinate paleoclimate where fossil counterparts lived. 7. Integrate analysis of the data from steps 4, 5 and 6, and quantitatively reconstruct the climate where fossil and living plants survive.