目的解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运...目的解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运输车本体运动模型,对观测模型进行去畸变处理,完成相机标定;设计基于视觉的自适应蒙特卡洛算法,获取特征信息,并用词袋模型进行分类,使用激光雷达构建2D栅格地图,采用特征点匹配估计位姿,实现AGV自我精确定位。结果仿真实验结果表明,本文所提算法与传统自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)算法相比,可使机器人更加快速地收敛到精度较高的位姿,具有更好的定位性能。结论基于视觉的AMCL算法设计,实现了导向辊生产车间机器人的高精度定位,优化了作业流程,提高了生产线系统智能化运行水平,可为其他场景定位应用提供参考。展开更多
化工生产车间粉尘的存在会影响设备的正常运行和寿命,因此,本文设计一种基于远距离无线电(long range radio,LORA)通信的化工生产车间粉尘浓度在线监测方法。该方法利用均衡算法处理监测数据。选取关键特征构建监测模型,一旦监测到粉尘...化工生产车间粉尘的存在会影响设备的正常运行和寿命,因此,本文设计一种基于远距离无线电(long range radio,LORA)通信的化工生产车间粉尘浓度在线监测方法。该方法利用均衡算法处理监测数据。选取关键特征构建监测模型,一旦监测到粉尘浓度超过预设的安全阈值,立即发出超限报警,提醒工作人员及时采取应对措施。实验结果表明,设计的基于LORA通信的化工生产车间粉尘浓度在线监测方法,监测到的粉尘浓度与真实样本值几乎完全一致。该方法具有极高的准确性,在粉尘浓度监测方面具有显著优势。展开更多
文摘目的解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运输车本体运动模型,对观测模型进行去畸变处理,完成相机标定;设计基于视觉的自适应蒙特卡洛算法,获取特征信息,并用词袋模型进行分类,使用激光雷达构建2D栅格地图,采用特征点匹配估计位姿,实现AGV自我精确定位。结果仿真实验结果表明,本文所提算法与传统自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)算法相比,可使机器人更加快速地收敛到精度较高的位姿,具有更好的定位性能。结论基于视觉的AMCL算法设计,实现了导向辊生产车间机器人的高精度定位,优化了作业流程,提高了生产线系统智能化运行水平,可为其他场景定位应用提供参考。
文摘化工生产车间粉尘的存在会影响设备的正常运行和寿命,因此,本文设计一种基于远距离无线电(long range radio,LORA)通信的化工生产车间粉尘浓度在线监测方法。该方法利用均衡算法处理监测数据。选取关键特征构建监测模型,一旦监测到粉尘浓度超过预设的安全阈值,立即发出超限报警,提醒工作人员及时采取应对措施。实验结果表明,设计的基于LORA通信的化工生产车间粉尘浓度在线监测方法,监测到的粉尘浓度与真实样本值几乎完全一致。该方法具有极高的准确性,在粉尘浓度监测方面具有显著优势。