期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向古文自然语言处理生成任务的大语言模型评测研究
1
作者 朱丹浩 赵志枭 +4 位作者 张一平 孙光耀 刘畅 胡蝶 王东波 《信息资源管理学报》 CSSCI 2024年第5期45-58,共14页
大语言模型的频繁发布为大语言模型的评测研究带来了机遇与挑战,针对通用领域大语言模型的评测体系日趋成熟,而面向垂直领域的大语言模型评测仍在起步阶段,本文以古文领域评测为切入点,从语言和知识两个维度构建了一批古籍领域评测任务... 大语言模型的频繁发布为大语言模型的评测研究带来了机遇与挑战,针对通用领域大语言模型的评测体系日趋成熟,而面向垂直领域的大语言模型评测仍在起步阶段,本文以古文领域评测为切入点,从语言和知识两个维度构建了一批古籍领域评测任务,并选取当前各大榜单中性能较为优越的13个通用领域大语言模型进行评测。评测结果显示,ERNIE-Bot在古籍领域知识方面遥遥领先于其他模型,而GPT-4模型在语言能力方面表现出最佳性能,在开源模型中,ChatGLM系列模型表现最为出色。通过构建评测任务和数据集,制定了一套适用于古籍领域的大语言模型评测标准,为古籍领域大语言模型性能评测提供了参考,也为后续古籍大语言模型训练过程中的基座模型选取提供了依据。 展开更多
关键词 大语言模型 生成式任务 大模型评测 古籍 领域知识
下载PDF
基于多通道多步融合的生成式视觉对话模型
2
作者 陈思航 江爱文 +1 位作者 崔朝阳 王明文 《计算机应用》 CSCD 北大核心 2024年第1期39-46,共8页
当前视觉对话任务在多模态信息融合和推理方面取得了较大进展,但是,在回答一些涉及具有比较明确语义属性和位置空间关系的问题时,主流模型的能力依然有限。比较少的主流模型在正式响应之前能够显式地提供有关图像内容的、语义充分的细... 当前视觉对话任务在多模态信息融合和推理方面取得了较大进展,但是,在回答一些涉及具有比较明确语义属性和位置空间关系的问题时,主流模型的能力依然有限。比较少的主流模型在正式响应之前能够显式地提供有关图像内容的、语义充分的细粒度表达。视觉特征表示与对话历史、当前问句等文本语义之间缺少必要的、缓解语义鸿沟的桥梁,因此提出一种基于多通道多步融合的视觉对话模型MCMI。该模型显式提供一组关于视觉内容的细粒度语义描述信息,并通过“视觉−语义−对话”历史三者相互作用和多步融合,能够丰富问题的语义表示,实现较为准确的答案解码。在VisDial v0.9/VisDial v1.0数据集中,MCMI模型较基准模型双通道多跳推理模型(DMRM),平均倒数排名(MRR)分别提升了1.95和2.12个百分点,召回率(R@1)分别提升了2.62和3.09个百分点,正确答案平均排名(Mean)分别提升了0.88和0.99;在VisDial v1.0数据集中,较最新模型UTC(Unified Transformer Contrastive learning model),MRR、R@1、Mean分别提升了0.06百分点,0.68百分点和1.47。为了进一步评估生成对话的质量,提出类图灵测试响应通过比例M1和对话质量分数(五分制)M2两个人工评价指标。在VisDial v0.9数据集中,相较于基准模型DMRM,MCMI模型的M1和M2指标分别提高了9.00百分点和0.70。 展开更多
关键词 视觉对话 生成式任务 视觉语义描述 多步融合 多通道融合
下载PDF
多任务学习 被引量:33
3
作者 张钰 刘建伟 左信 《计算机学报》 EI CSCD 北大核心 2020年第7期1340-1378,共39页
随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标... 随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标注数据进行充分训练,否则就会出现欠拟合的情况而导致学习性能的下降.因此,随着任务复杂程度和数据规模的增加,对人工标注数据的数量和质量也提出了更高的要求,造成了标注成本和难度的增大.同时,单一任务的独立学习往往忽略了来自其它任务的经验信息,致使训练冗余重复和学习资源的浪费,也限制了其性能的提升.为了缓解这些问题,属于迁移学习范畴的多任务学习方法逐渐引起了研究者的重视.与单任务学习只使用单个任务的样本信息不同,多任务学习假设不同任务数据分布之间存在一定的相似性,在此基础上通过共同训练和优化建立任务之间的联系.这种训练模式充分促进任务之间的信息交换并达到了相互学习的目的,尤其是在各自任务样本容量有限的条件下,各个任务可以从其它任务获得一定的启发,借助于学习过程中的信息迁移能间接利用其它任务的数据,从而缓解了对大量标注数据的依赖,也达到了提升各自任务学习性能的目的.在此背景之下,本文首先介绍了相关任务的概念,并按照功能的不同对相关任务的类型进行划分,之后对它们的特点进行了逐一描述.然后,本文按照数据的处理模式和任务关系的建模过程不同将当前的主流算法划分为两大类:结构化多任务学习算法和深度多任务学习算法.其中,结构化多任务学习算法采用线性模型,可以直接针对数据进行结构假设并且使用原有标注特征表述任务关系,同时,又可根据学习对象的不同将其细分为基于任务层面和基于特征层面两种不同结构,每种结构有判别式方法和生成式方法两种实现手段.与结构化多任务学习算法的建模过程不同,深度多任务学习算法利用经过多层特征抽象后的深层次信息进行任务关系描述,通过处理特定网络层中的参数达到信息共享的目的.紧接着,以两大类算法作为主线,本文详细分析了不同建模方法中对任务关系的结构假设、实现途径、各自的优缺点以及方法之间的联系.最后,本文总结了任务之间相似性及其紧密程度的判别依据,并且分析了多任务作用机制的有效性和内在成因,从归纳偏置和动态求解等角度阐述了多任务信息迁移的特点. 展开更多
关键词 任务学习 信息迁移 任务相似性 贝叶斯生成式模型多任务学习 判别式多任务学习 深度多任务学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部