Chilo iridescent virus (CIV) is the type species for genus Iridovirus, and belongs to the family Iridoviridae. Since the discovery of CIV in 1966, many attempts were made to elucidate the viral genome structure. The v...Chilo iridescent virus (CIV) is the type species for genus Iridovirus, and belongs to the family Iridoviridae. Since the discovery of CIV in 1966, many attempts were made to elucidate the viral genome structure. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The genome of CIV has been entirely sequenced. The CIV virion consists of an unusual three-layer structure containing an outer proteinaceous capsid, an intermediate lipid membrane, and a core DNA-protein complex containing the genome. CIV has a broad host spectrum and has, in general, a limited mortality effect on its hosts. Up to now there have been several studies about CIV describing its structure, ecology, and molecular biology. In this review study we present all these studies together to describe the CIV.展开更多
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes.Each method has unique strengths and weaknesses.While the two techniques are hig...NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes.Each method has unique strengths and weaknesses.While the two techniques are highly complementary,they have generally been used separately to address the structure and functions of biomolecular complexes.In this review,we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies.We demonstrate,using several recent examples from our own laboratory,that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes,without any prior knowledge of conformation,is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography.Thus NMR spectroscopy,in addition to answering many unique structural biology questions that can be addressed specifically by that technique,can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.展开更多
基金The National Key Basic Research Program of China(2013CB910203)the National Natural Science Foundation of China(31270760)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB08030102)the Specialized Research Fund for the Doctoral Program of Higher Education(20113402120013)
基金supported by the National Key Research and Development Program of China (2021YFA1301504)the National Natural Science Foundation of China (91953101)the Chinese Academy of Sciences Strategic Priority Research Program (XDB37040202)
文摘Chilo iridescent virus (CIV) is the type species for genus Iridovirus, and belongs to the family Iridoviridae. Since the discovery of CIV in 1966, many attempts were made to elucidate the viral genome structure. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The genome of CIV has been entirely sequenced. The CIV virion consists of an unusual three-layer structure containing an outer proteinaceous capsid, an intermediate lipid membrane, and a core DNA-protein complex containing the genome. CIV has a broad host spectrum and has, in general, a limited mortality effect on its hosts. Up to now there have been several studies about CIV describing its structure, ecology, and molecular biology. In this review study we present all these studies together to describe the CIV.
基金supported by grants from the Research Grants Council of Hong Kong to M.Z.supported by the National Major Basic Research Program of China (Grant No. 2011CB910500)+3 种基金the National Natural Science Foundation of China (Grant No. 31070657)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-YW-R-154)The NMR spectrometers used in our studies were funded by donations from the Hong Kong Jockey Club Charity Foundationthe Special Equipment Grant from RGC of Hong Kong (Grant No. SEG_HKUST06)
文摘NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes.Each method has unique strengths and weaknesses.While the two techniques are highly complementary,they have generally been used separately to address the structure and functions of biomolecular complexes.In this review,we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies.We demonstrate,using several recent examples from our own laboratory,that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes,without any prior knowledge of conformation,is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography.Thus NMR spectroscopy,in addition to answering many unique structural biology questions that can be addressed specifically by that technique,can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.