通过调控合成方式、改变原料比例,制备纳米棒状、纳米球状、椭球状、圆柱状及棋子状等不同形貌及硅铝比的ZSM-5分子筛,并对其催化甲缩醛气相羰基化反应性能进行详细考察。在110℃、0.6 MPa、CO与甲缩醛流速分别为100 mL·min-1和0.0...通过调控合成方式、改变原料比例,制备纳米棒状、纳米球状、椭球状、圆柱状及棋子状等不同形貌及硅铝比的ZSM-5分子筛,并对其催化甲缩醛气相羰基化反应性能进行详细考察。在110℃、0.6 MPa、CO与甲缩醛流速分别为100 mL·min-1和0.035 mL·min-1条件下,硅铝物质的量比为30的棋子形ZSM-5分子筛表现出最佳的催化活性,甲缩醛转化率达31.9%,目标产物甲氧基乙酸甲脂选择性为21.4%。通过XRD、SEM、XRF、Py-FTIR、NH 3-TPD以及27 Al MAS NMR等对合成的分子筛进行详细表征,发现调控分子筛形貌及硅铝物质的量比可改变ZSM-5分子筛的酸性特征,并改变分子筛骨架中活性铝物种分布。适量的中强B酸酸位及分子筛交叉孔道内较高比例的活性铝物种分布可能是硅铝物质的量比30的棋子形ZSM-5分子筛表现出较好催化活性的原因。展开更多
通过调控铝源合成了四种HZSM-5分子筛,并将其应用于催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应。结果表明,改变合成凝胶体系中的铝源种类,可以制备出织构性质、酸性特征相近,但骨架铝分布不同、催化羰基化性能迥异的HZSM-...通过调控铝源合成了四种HZSM-5分子筛,并将其应用于催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应。结果表明,改变合成凝胶体系中的铝源种类,可以制备出织构性质、酸性特征相近,但骨架铝分布不同、催化羰基化性能迥异的HZSM-5分子筛。其中,使用硝酸铝与硫酸铝作为铝源制备的分子筛HZ-N与HZ-S表现出更为优异的催化活性,HZ-N对应的DMM转化率与MMAc选择性分别为25.3%与58.9%,HZ-S对应的DMM转化率与MMAc选择性分别为28.7%与64.6%。采用Co-ZSM-5的UV-vis-DRS与27 Al MAS NMR等表征手段详细分析证实,硝酸铝与硫酸铝作为铝源时,更多的骨架铝优先落位于HZSM-5分子筛交叉孔道,其在催化DMM羰基化反应过程中起主导作用,落位比例高,更有利于反应的进行,反之可能导致较低的DMM转化率以及更高的副产物选择性。展开更多
文摘通过调控合成方式、改变原料比例,制备纳米棒状、纳米球状、椭球状、圆柱状及棋子状等不同形貌及硅铝比的ZSM-5分子筛,并对其催化甲缩醛气相羰基化反应性能进行详细考察。在110℃、0.6 MPa、CO与甲缩醛流速分别为100 mL·min-1和0.035 mL·min-1条件下,硅铝物质的量比为30的棋子形ZSM-5分子筛表现出最佳的催化活性,甲缩醛转化率达31.9%,目标产物甲氧基乙酸甲脂选择性为21.4%。通过XRD、SEM、XRF、Py-FTIR、NH 3-TPD以及27 Al MAS NMR等对合成的分子筛进行详细表征,发现调控分子筛形貌及硅铝物质的量比可改变ZSM-5分子筛的酸性特征,并改变分子筛骨架中活性铝物种分布。适量的中强B酸酸位及分子筛交叉孔道内较高比例的活性铝物种分布可能是硅铝物质的量比30的棋子形ZSM-5分子筛表现出较好催化活性的原因。
文摘通过调控铝源合成了四种HZSM-5分子筛,并将其应用于催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应。结果表明,改变合成凝胶体系中的铝源种类,可以制备出织构性质、酸性特征相近,但骨架铝分布不同、催化羰基化性能迥异的HZSM-5分子筛。其中,使用硝酸铝与硫酸铝作为铝源制备的分子筛HZ-N与HZ-S表现出更为优异的催化活性,HZ-N对应的DMM转化率与MMAc选择性分别为25.3%与58.9%,HZ-S对应的DMM转化率与MMAc选择性分别为28.7%与64.6%。采用Co-ZSM-5的UV-vis-DRS与27 Al MAS NMR等表征手段详细分析证实,硝酸铝与硫酸铝作为铝源时,更多的骨架铝优先落位于HZSM-5分子筛交叉孔道,其在催化DMM羰基化反应过程中起主导作用,落位比例高,更有利于反应的进行,反之可能导致较低的DMM转化率以及更高的副产物选择性。