目的探讨能谱CT联合超声C-TIRADS分级鉴别甲状腺结节良恶性的价值。方法选取2023年5月至2024年5月滨州医学院附属医院收治的70例甲状腺结节患者进行回顾性分析,其中良性结节26例,恶性结节44例。术前均行超声检查及能谱CT增强扫描。比较...目的探讨能谱CT联合超声C-TIRADS分级鉴别甲状腺结节良恶性的价值。方法选取2023年5月至2024年5月滨州医学院附属医院收治的70例甲状腺结节患者进行回顾性分析,其中良性结节26例,恶性结节44例。术前均行超声检查及能谱CT增强扫描。比较两组年龄、性别、结节长径、能谱CT参数等资料。通过单因素及多因素分析筛选出能谱CT的独立预测因素,引入超声C-TIRADS分级构建列线图模型。采用Bootstrap法迭代1000次,内部验证模型的稳定性。采用独立样本t检验、Mann-Whitney U检验、χ^(2)检验进行统计分析。结果良性组和恶性组能谱参数[包括动脉期及静脉期碘浓度(iodine concentration,IC)、标准化碘浓度(normal iodine concentration,NIC)、能谱曲线斜率(slope of the energy spectrum curve,λHU)]以及结节长径比较,差异均有统计学意义(均P<0.05)。多因素分析表明,动脉期IC及静脉期NIC是鉴别甲状腺结节良恶性的独立预测因素(均P<0.05)。基于上述变量构建预测模型,该模型曲线下面积(AUC)为0.940。利用超声C-TIRADS分级诊断甲状腺结节良恶性,其AUC为0.823。超声C-TIRADS分级联合能谱CT参数构建列线图,其AUC为0.982。校准曲线显示,列线图校准度表现优秀,Brier评分为0.051。决定曲线分析显示,在广泛阈值概率范围内,列线图均表现出较好的临床净收益。应用Bootstrap法进行1000次迭代,计算平均AUC来对列线图模型进行内部验证,平均AUC为0.961。结论能谱CT预测模型AUC高于超声C-TIRADS分级。联合模型可以提高能谱CT及超声C-TIRADS分级鉴别甲状腺结节良恶性的效能。展开更多
文摘目的探讨能谱CT联合超声C-TIRADS分级鉴别甲状腺结节良恶性的价值。方法选取2023年5月至2024年5月滨州医学院附属医院收治的70例甲状腺结节患者进行回顾性分析,其中良性结节26例,恶性结节44例。术前均行超声检查及能谱CT增强扫描。比较两组年龄、性别、结节长径、能谱CT参数等资料。通过单因素及多因素分析筛选出能谱CT的独立预测因素,引入超声C-TIRADS分级构建列线图模型。采用Bootstrap法迭代1000次,内部验证模型的稳定性。采用独立样本t检验、Mann-Whitney U检验、χ^(2)检验进行统计分析。结果良性组和恶性组能谱参数[包括动脉期及静脉期碘浓度(iodine concentration,IC)、标准化碘浓度(normal iodine concentration,NIC)、能谱曲线斜率(slope of the energy spectrum curve,λHU)]以及结节长径比较,差异均有统计学意义(均P<0.05)。多因素分析表明,动脉期IC及静脉期NIC是鉴别甲状腺结节良恶性的独立预测因素(均P<0.05)。基于上述变量构建预测模型,该模型曲线下面积(AUC)为0.940。利用超声C-TIRADS分级诊断甲状腺结节良恶性,其AUC为0.823。超声C-TIRADS分级联合能谱CT参数构建列线图,其AUC为0.982。校准曲线显示,列线图校准度表现优秀,Brier评分为0.051。决定曲线分析显示,在广泛阈值概率范围内,列线图均表现出较好的临床净收益。应用Bootstrap法进行1000次迭代,计算平均AUC来对列线图模型进行内部验证,平均AUC为0.961。结论能谱CT预测模型AUC高于超声C-TIRADS分级。联合模型可以提高能谱CT及超声C-TIRADS分级鉴别甲状腺结节良恶性的效能。