In this paper the two effluents from PBA (3- phenoxy -benzaldehyde) productionprocess were treated by polymeric adsorbent CHA-lll. PBA or PBC(3-phenoxybenzoic acid) was recovered from the wastewater in the process of ...In this paper the two effluents from PBA (3- phenoxy -benzaldehyde) productionprocess were treated by polymeric adsorbent CHA-lll. PBA or PBC(3-phenoxybenzoic acid) was recovered from the wastewater in the process of neutralization. As asecondary treatment method, adsorption with CHA-lll showed better efficency thanPhotocatalytic decomposition and solvent extraction. The optimal technologicalparameters were: adsorption: current velocity: 2.0 BV/hr(bed volume per hour), roomtemperature, desorption: current velocity:10 BV/hr 80℃8% sodium hydroxideaqueous solutions. In conclusion, 90.9% COD in the neutralizing wastewater and98. 4% COD in the hydrolysis wastewater are removed successfully.展开更多
文摘In this paper the two effluents from PBA (3- phenoxy -benzaldehyde) productionprocess were treated by polymeric adsorbent CHA-lll. PBA or PBC(3-phenoxybenzoic acid) was recovered from the wastewater in the process of neutralization. As asecondary treatment method, adsorption with CHA-lll showed better efficency thanPhotocatalytic decomposition and solvent extraction. The optimal technologicalparameters were: adsorption: current velocity: 2.0 BV/hr(bed volume per hour), roomtemperature, desorption: current velocity:10 BV/hr 80℃8% sodium hydroxideaqueous solutions. In conclusion, 90.9% COD in the neutralizing wastewater and98. 4% COD in the hydrolysis wastewater are removed successfully.