针对传统配电网电压控制方法存在的调节资源有限、调控成本较高、响应速度较慢等问题,提出一种利用电制氢(power to hydrogen,P2H)辅助的两阶段电压随机优化控制策略。首先,在建立P2H装置在内的调压设备运行约束以及配电网线路约束的基...针对传统配电网电压控制方法存在的调节资源有限、调控成本较高、响应速度较慢等问题,提出一种利用电制氢(power to hydrogen,P2H)辅助的两阶段电压随机优化控制策略。首先,在建立P2H装置在内的调压设备运行约束以及配电网线路约束的基础上,建立了考虑电解制气收益的日前-日内两阶段电压优化控制模型。其次,针对分布式能源出力和负荷需求日内短时扰动引发的电压波动甚至越限问题,基于拉丁超立方抽样与Kantorovich距离削减技术构建了配电网典型运行场景,并以各场景下日内阶段目标函数期望最小为目标求解电压控制策略。算例结果表明,所提方法相比于不考虑P2H辅助的常规电压控制方案,有效避免了电压越限问题,并且总控制成本降低了26.43%。展开更多
电制氢(power to hydrogen,P2H)和天然气混氢技术在促进可再生能源消纳、降低系统碳排放量方面具有良好的理论研究和工程应用前景。面向含高比例可再生能源的园区综合能源系统,提出一种计及天然气混氢及跨季节存储的P2H优化配置方法。...电制氢(power to hydrogen,P2H)和天然气混氢技术在促进可再生能源消纳、降低系统碳排放量方面具有良好的理论研究和工程应用前景。面向含高比例可再生能源的园区综合能源系统,提出一种计及天然气混氢及跨季节存储的P2H优化配置方法。首先梳理了含氢园区综合能源系统的运行框架和能量流动关系,建立园区内部能源生产、转换与存储设备的数学模型;然后以设备的年化投资成本、园区综合能源系统的年度运行成本和碳交易成本最优为目标,提出P2H优化配置模型;最后通过算例分析验证文中所提模型的有效性,并比较了电解槽投资成本、混氢体积分数上限以及经济性和低碳性成本权重系数变化对规划运行结果的影响。算例结果表明文中所提模型可有效提升可再生能源消纳能力,降低系统整体经济成本和碳排放量。展开更多
氢能产业是战略性新兴产业和未来产业的重点发展方向,采用可再生能源制备的绿氢是实现用能终端绿色低碳转型的重要载体,但目前为止,绿电制氢项目普遍面临收益低下的问题,因此,文章通过选取新能源场景建立计算模型,运用氢的平准化成本(LC...氢能产业是战略性新兴产业和未来产业的重点发展方向,采用可再生能源制备的绿氢是实现用能终端绿色低碳转型的重要载体,但目前为止,绿电制氢项目普遍面临收益低下的问题,因此,文章通过选取新能源场景建立计算模型,运用氢的平准化成本(LCOH)法对新能源发电制氢的经济性——即内部收益率进行了评估,并分析了制氢成本的敏感因素,对绿氢在新型电力系统的发展给出了针对性建议,分析结果显示影响制氢成本的主要因素为:制氢效率,电价,投资成本等。为提高制氢效率并展开持续的稳态制氢就必须要克服绿电的波动特性,文章建议制氢工艺系统的优化发展以集群式柔性调节技术作为主要的技术突破方向,即采取配置储能、降低并、离网调频、采用新一代IGBT技术的制氢设备、为系统设置智能化能量算法等,这些协调方式都可以有效地缓解能量波动对制氢化学反应带来的冲击,此外,文章分析结果显示,把控中间产品“电价”将对绿氢成本影响深远,低成本的电力是实现绿氢与绿电联合这一预期的关键,这对电力系统的长期规划和运行提出了要求,也强调了电网的承接和政策支持的必要性。The hydrogen energy industry is a strategic emerging industry and a key development direction for future industries. Green hydrogen produced from renewable energy is an important carrier for achieving green and low-carbon transformation of energy terminals. However, green electricity hydrogen production projects generally face the problem of low returns. Therefore, this article selects new energy scenarios to establish a calculation model, uses the Levelized Cost of Hydrogen (LCOH) method to evaluate the economic feasibility—specifically the internal rate of return—of new energy power hydrogen production, and analyzes the sensitive factors of hydrogen production costs. Targeted suggestions are given for the development of green hydrogen in new power systems. The analysis results show that the main factors affecting hydrogen production costs are: hydrogen production efficiency, electricity prices, investment costs, etc. In order to improve hydrogen production efficiency and carry out continuous steady-state hydrogen production, it is necessary to overcome the fluctuation characteristics of green electricity. This article suggests that the optimization and development of hydrogen production process systems should focus on cluster flexible regulation technology as the main technological breakthrough direction, which includes configuring energy storage, reducing grid-connected and off-grid frequency regulation, adopting new generation IGBT technology for hydrogen production equipment, and setting intelligent energy algorithms for the system. These coordination methods can effectively alleviate the impact of energy fluctuations on hydrogen production chemical reactions. In addition, the analysis results of this article show that controlling the “electricity price” of intermediate products will have a profound impact on the cost of green hydrogen. Low-cost electricity is the key to achieving the expected combination of green hydrogen and green electricity, which puts forward requirements for the long-term planning and operation of the power system, and emphasizes the undertaking of the power grid. The necessity of policy support.展开更多
文摘针对传统配电网电压控制方法存在的调节资源有限、调控成本较高、响应速度较慢等问题,提出一种利用电制氢(power to hydrogen,P2H)辅助的两阶段电压随机优化控制策略。首先,在建立P2H装置在内的调压设备运行约束以及配电网线路约束的基础上,建立了考虑电解制气收益的日前-日内两阶段电压优化控制模型。其次,针对分布式能源出力和负荷需求日内短时扰动引发的电压波动甚至越限问题,基于拉丁超立方抽样与Kantorovich距离削减技术构建了配电网典型运行场景,并以各场景下日内阶段目标函数期望最小为目标求解电压控制策略。算例结果表明,所提方法相比于不考虑P2H辅助的常规电压控制方案,有效避免了电压越限问题,并且总控制成本降低了26.43%。
文摘电制氢(power to hydrogen,P2H)和天然气混氢技术在促进可再生能源消纳、降低系统碳排放量方面具有良好的理论研究和工程应用前景。面向含高比例可再生能源的园区综合能源系统,提出一种计及天然气混氢及跨季节存储的P2H优化配置方法。首先梳理了含氢园区综合能源系统的运行框架和能量流动关系,建立园区内部能源生产、转换与存储设备的数学模型;然后以设备的年化投资成本、园区综合能源系统的年度运行成本和碳交易成本最优为目标,提出P2H优化配置模型;最后通过算例分析验证文中所提模型的有效性,并比较了电解槽投资成本、混氢体积分数上限以及经济性和低碳性成本权重系数变化对规划运行结果的影响。算例结果表明文中所提模型可有效提升可再生能源消纳能力,降低系统整体经济成本和碳排放量。
文摘氢能产业是战略性新兴产业和未来产业的重点发展方向,采用可再生能源制备的绿氢是实现用能终端绿色低碳转型的重要载体,但目前为止,绿电制氢项目普遍面临收益低下的问题,因此,文章通过选取新能源场景建立计算模型,运用氢的平准化成本(LCOH)法对新能源发电制氢的经济性——即内部收益率进行了评估,并分析了制氢成本的敏感因素,对绿氢在新型电力系统的发展给出了针对性建议,分析结果显示影响制氢成本的主要因素为:制氢效率,电价,投资成本等。为提高制氢效率并展开持续的稳态制氢就必须要克服绿电的波动特性,文章建议制氢工艺系统的优化发展以集群式柔性调节技术作为主要的技术突破方向,即采取配置储能、降低并、离网调频、采用新一代IGBT技术的制氢设备、为系统设置智能化能量算法等,这些协调方式都可以有效地缓解能量波动对制氢化学反应带来的冲击,此外,文章分析结果显示,把控中间产品“电价”将对绿氢成本影响深远,低成本的电力是实现绿氢与绿电联合这一预期的关键,这对电力系统的长期规划和运行提出了要求,也强调了电网的承接和政策支持的必要性。The hydrogen energy industry is a strategic emerging industry and a key development direction for future industries. Green hydrogen produced from renewable energy is an important carrier for achieving green and low-carbon transformation of energy terminals. However, green electricity hydrogen production projects generally face the problem of low returns. Therefore, this article selects new energy scenarios to establish a calculation model, uses the Levelized Cost of Hydrogen (LCOH) method to evaluate the economic feasibility—specifically the internal rate of return—of new energy power hydrogen production, and analyzes the sensitive factors of hydrogen production costs. Targeted suggestions are given for the development of green hydrogen in new power systems. The analysis results show that the main factors affecting hydrogen production costs are: hydrogen production efficiency, electricity prices, investment costs, etc. In order to improve hydrogen production efficiency and carry out continuous steady-state hydrogen production, it is necessary to overcome the fluctuation characteristics of green electricity. This article suggests that the optimization and development of hydrogen production process systems should focus on cluster flexible regulation technology as the main technological breakthrough direction, which includes configuring energy storage, reducing grid-connected and off-grid frequency regulation, adopting new generation IGBT technology for hydrogen production equipment, and setting intelligent energy algorithms for the system. These coordination methods can effectively alleviate the impact of energy fluctuations on hydrogen production chemical reactions. In addition, the analysis results of this article show that controlling the “electricity price” of intermediate products will have a profound impact on the cost of green hydrogen. Low-cost electricity is the key to achieving the expected combination of green hydrogen and green electricity, which puts forward requirements for the long-term planning and operation of the power system, and emphasizes the undertaking of the power grid. The necessity of policy support.