Objective To examine the effect of deglycosylation on gating properties of rNav1.3. Methods rNav1.3 was expressed in Xenopus oocyte, with glycosylation inhibition by using tunicamycin. Two-electrode voltage clamp was ...Objective To examine the effect of deglycosylation on gating properties of rNav1.3. Methods rNav1.3 was expressed in Xenopus oocyte, with glycosylation inhibition by using tunicamycin. Two-electrode voltage clamp was employed to record the whole-cell sodium current and data were analyzed by Origin software. Those of glycosylated rNav1.3 were kept as control. Results Compared with glycosylated ones, the steady-state activation curve of deglycosylated rNav1.3 was positively shifted by about 10 mV, while inactivation curve was negatively shifted by about 8 mV. Conclusion Glycosylation altered the gating properties of rNav 1.3 and contributed to the functional diversity.展开更多
Voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability,and their abnormal activity is related to several pathological processes,including cardiac arrhythmias,epilepsy,neurod...Voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability,and their abnormal activity is related to several pathological processes,including cardiac arrhythmias,epilepsy,neurodegenerative diseases,spasticity and chronic pain.In particular,chronic visceral pain,the central symptom of functional gastrointestinal disorders such as irritable bowel syndrome,is a serious clinical problem that affects a high percentage of the world population.In spite of intense research efforts and after the dedicated decade of pain control and research,there are not many options to treat chronic pain conditions.However,there is a wealth of evidence emerging to give hope that a more refined approach may be achievable.By using electronic databases,available data on structural and functional properties of VGSCs in chronic pain,particularly functional gastrointestinal hypersensitivity,were reviewed.We summarize the involvement and molecular bases of action of VGSCs in the pathophysiology of several organic and functionalgastrointestinal disorders.We also describe the efficacy of VGSC blockers in the treatment of these neurological diseases,and outline future developments that may extend the therapeutic use of compounds that target VGSCs.Overall,clinical and experimental data indicate that isoform-specific blockers of these channels or targeting of their modulators may provide effective and novel approaches for visceral pain therapy.展开更多
Objective The purpose of our study is to observe the voltage-gated potassium channel Kvl.3 expressed on CD4+CD28~ T cells from the peripheral blood of acute coronary syndrome (ACS) patients by the patch clamp techn...Objective The purpose of our study is to observe the voltage-gated potassium channel Kvl.3 expressed on CD4+CD28~ T cells from the peripheral blood of acute coronary syndrome (ACS) patients by the patch clamp technique. Methods Kvl.3 potassium channels expression from 17 patients with ACS and 11 healthy age-match controls was detected in single cell(CD4+CD28null T cells and CD4+CD28+T cells) by fluorescence mieroscopy and patch clamp. Results The percentage of CD4+CD28mullT cells was higher in the ACS patients [(6.97±2.05)%] than that in the controls [(1.38±0.84)%, P〈0.05]. The concentration of hsCRP was directly correlated with the number of the CD4~CD28nul~ T cells in the ACS patients (r=0.52, P〈0,05). The conductance (6.89±1.17ns vs 3.36±0.66ns), dens (1.95±0.80 μm2 vs 1.13±0.57 μm2) and numbers (574.5±97.6 n/cell vs. 280.3±55.3 n/cell) of the Kv1.3 channels on the CIM+CD28null T cells were significantly higher than those on the CD4+CD28+ T cells (all P〈0.01) in ACS patients, but were similar on CD4+CD28+T betweenACS patients and controls. Conclusion The CD4+CD28nullT cells and the numbers of Kvl.3 channels on the CD4+CD28nullT cells from patients with ACS are significantly upregulated and might contribute to the pathogenesis of ACS (d Geriatr Cardio12010; 7:40-46).展开更多
Voltage-gated ion channels(VGICs) are central to cellular excitation, orchestrating skeletal and cardiac muscle contractions and enabling neural signal transduction. Among these, voltage-gated potassium(Kv) channels a...Voltage-gated ion channels(VGICs) are central to cellular excitation, orchestrating skeletal and cardiac muscle contractions and enabling neural signal transduction. Among these, voltage-gated potassium(Kv) channels are particularly significant in cardiac electrophysiology, especially during the repolarization phase of the cardiac action potential. In cardiac myocytes, Kv channels are integral to a multitude of sophisticated functions, including electrical conduction. Despite their importance, research on Kv channels in the context of cardiovascular diseases is limited. This review offers a comprehensive summary of the structural complexities of Kv channels, delineating the regulatory mechanisms involved in channel gating, expression, and membrane localization. Additionally, we examine the role of different Kv α-subunits in modulating Kv channels and their impact on cardiac remodeling, and assess the potential of targeting Kv channels for the development of anti-arrhythmic therapies.展开更多
基金the National Basic Research Development Program of China (No. 2006CB500801).
文摘Objective To examine the effect of deglycosylation on gating properties of rNav1.3. Methods rNav1.3 was expressed in Xenopus oocyte, with glycosylation inhibition by using tunicamycin. Two-electrode voltage clamp was employed to record the whole-cell sodium current and data were analyzed by Origin software. Those of glycosylated rNav1.3 were kept as control. Results Compared with glycosylated ones, the steady-state activation curve of deglycosylated rNav1.3 was positively shifted by about 10 mV, while inactivation curve was negatively shifted by about 8 mV. Conclusion Glycosylation altered the gating properties of rNav 1.3 and contributed to the functional diversity.
文摘Voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability,and their abnormal activity is related to several pathological processes,including cardiac arrhythmias,epilepsy,neurodegenerative diseases,spasticity and chronic pain.In particular,chronic visceral pain,the central symptom of functional gastrointestinal disorders such as irritable bowel syndrome,is a serious clinical problem that affects a high percentage of the world population.In spite of intense research efforts and after the dedicated decade of pain control and research,there are not many options to treat chronic pain conditions.However,there is a wealth of evidence emerging to give hope that a more refined approach may be achievable.By using electronic databases,available data on structural and functional properties of VGSCs in chronic pain,particularly functional gastrointestinal hypersensitivity,were reviewed.We summarize the involvement and molecular bases of action of VGSCs in the pathophysiology of several organic and functionalgastrointestinal disorders.We also describe the efficacy of VGSC blockers in the treatment of these neurological diseases,and outline future developments that may extend the therapeutic use of compounds that target VGSCs.Overall,clinical and experimental data indicate that isoform-specific blockers of these channels or targeting of their modulators may provide effective and novel approaches for visceral pain therapy.
文摘Objective The purpose of our study is to observe the voltage-gated potassium channel Kvl.3 expressed on CD4+CD28~ T cells from the peripheral blood of acute coronary syndrome (ACS) patients by the patch clamp technique. Methods Kvl.3 potassium channels expression from 17 patients with ACS and 11 healthy age-match controls was detected in single cell(CD4+CD28null T cells and CD4+CD28+T cells) by fluorescence mieroscopy and patch clamp. Results The percentage of CD4+CD28mullT cells was higher in the ACS patients [(6.97±2.05)%] than that in the controls [(1.38±0.84)%, P〈0.05]. The concentration of hsCRP was directly correlated with the number of the CD4~CD28nul~ T cells in the ACS patients (r=0.52, P〈0,05). The conductance (6.89±1.17ns vs 3.36±0.66ns), dens (1.95±0.80 μm2 vs 1.13±0.57 μm2) and numbers (574.5±97.6 n/cell vs. 280.3±55.3 n/cell) of the Kv1.3 channels on the CIM+CD28null T cells were significantly higher than those on the CD4+CD28+ T cells (all P〈0.01) in ACS patients, but were similar on CD4+CD28+T betweenACS patients and controls. Conclusion The CD4+CD28nullT cells and the numbers of Kvl.3 channels on the CD4+CD28nullT cells from patients with ACS are significantly upregulated and might contribute to the pathogenesis of ACS (d Geriatr Cardio12010; 7:40-46).
文摘Voltage-gated ion channels(VGICs) are central to cellular excitation, orchestrating skeletal and cardiac muscle contractions and enabling neural signal transduction. Among these, voltage-gated potassium(Kv) channels are particularly significant in cardiac electrophysiology, especially during the repolarization phase of the cardiac action potential. In cardiac myocytes, Kv channels are integral to a multitude of sophisticated functions, including electrical conduction. Despite their importance, research on Kv channels in the context of cardiovascular diseases is limited. This review offers a comprehensive summary of the structural complexities of Kv channels, delineating the regulatory mechanisms involved in channel gating, expression, and membrane localization. Additionally, we examine the role of different Kv α-subunits in modulating Kv channels and their impact on cardiac remodeling, and assess the potential of targeting Kv channels for the development of anti-arrhythmic therapies.