Soil saturated hydraulic conductivity(K_s) is a predominant input factor when forecasting the vertical transport of contaminants through the soil or when estimating the flood retention capacity of the soil. Displaceme...Soil saturated hydraulic conductivity(K_s) is a predominant input factor when forecasting the vertical transport of contaminants through the soil or when estimating the flood retention capacity of the soil. Displacement of contaminants in the soil over extended periods of time can be attributed mainly to matrix flow, whereas flow through macropores becomes significant under untypically wet conditions, e.g., during spills or rain storms. To obtain matrix conductivities for a soil, the effects of macropores should be excluded.However, the K_s values of a soil profile are unlikely to be reflected solely by pedotransfer tables based on soil texture and bulk density.In this study, we examined five different methods(pedotransfer table, soil core, borehole permeameter, particle-size distribution curve, and instantaneous profile) to determine K_s values for a mercury-contaminated riparian soil for subsequent simulation of longterm mercury displacement toward groundwater. We found that the determined K_s values increased in the following order: borehole permeameter < particle-size distribution curve < pedotransfer table < instantaneous profile < soil core. The instantaneous profile method yielded K_s values of matrix flow, which additionally reflected the structure-related features of K_s values as provided by the soil core method. Despite being labor intensive and requiring expensive field sensors, the instantaneous profile method may provide the best representative in-situ K_s values for the studied site.展开更多
文摘Soil saturated hydraulic conductivity(K_s) is a predominant input factor when forecasting the vertical transport of contaminants through the soil or when estimating the flood retention capacity of the soil. Displacement of contaminants in the soil over extended periods of time can be attributed mainly to matrix flow, whereas flow through macropores becomes significant under untypically wet conditions, e.g., during spills or rain storms. To obtain matrix conductivities for a soil, the effects of macropores should be excluded.However, the K_s values of a soil profile are unlikely to be reflected solely by pedotransfer tables based on soil texture and bulk density.In this study, we examined five different methods(pedotransfer table, soil core, borehole permeameter, particle-size distribution curve, and instantaneous profile) to determine K_s values for a mercury-contaminated riparian soil for subsequent simulation of longterm mercury displacement toward groundwater. We found that the determined K_s values increased in the following order: borehole permeameter < particle-size distribution curve < pedotransfer table < instantaneous profile < soil core. The instantaneous profile method yielded K_s values of matrix flow, which additionally reflected the structure-related features of K_s values as provided by the soil core method. Despite being labor intensive and requiring expensive field sensors, the instantaneous profile method may provide the best representative in-situ K_s values for the studied site.