Two new circuit techniques to suppress leakage currents and enhance noise immunity while decreasing the active power are proposed. Eight-input OR gate circuits constructed with these techniques are simulated using 45n...Two new circuit techniques to suppress leakage currents and enhance noise immunity while decreasing the active power are proposed. Eight-input OR gate circuits constructed with these techniques are simulated using 45nm BSIM4 SPICE models in HSPICE. The simulation results show that the proposed circuits effectively lower the active power, reduce the total leakage current, and enhance speed under similar noise immunity conditions. The active power of the two proposed circuits can be reduced by up to 8. 8% and 11.8% while enhancing the speed by 9.5% and 13.7% as compared to dual Vt domino OR gates with no gating stage. At the same time,the total leakage currents are also reduced by up to 80.8% and 82.4% ,respectively. Based on the simulation results,the state of the evaluation node is also discussed to reduce the total leakage currents of dual Vt dominos.展开更多
Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship ha...Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.展开更多
Based on the proper assumptions and approximations, the coupling mechanism of the electromagnetic acoustic transducer (EMAT) for ultrasonic generation within ferromagnetic material was studied by analyzing the eddy cu...Based on the proper assumptions and approximations, the coupling mechanism of the electromagnetic acoustic transducer (EMAT) for ultrasonic generation within ferromagnetic material was studied by analyzing the eddy current distribution, Lorentz force, magnetostriction force and magnetization force. Some useful numerical calculations are presented to explain the EMAT behavior with general geometric arrangements. It is indicated that for the ferromagnetic material the magnetostriction effect dominates the EMAT phenomenon for ultrasonic wave generation in low magnetic field intensity, while the material does not reach its magnetizing saturation. But, with the increase of the bias magnetic field and saturation, the magnetostrictive terms will make no contributions to the ultrasonic generation and the Lorentz force becomes the only exciting mechanism. It is important to determine both the Lorentz and magnetostriction forces and select the appropriate working manner for achieving an optimized design.展开更多
文摘Two new circuit techniques to suppress leakage currents and enhance noise immunity while decreasing the active power are proposed. Eight-input OR gate circuits constructed with these techniques are simulated using 45nm BSIM4 SPICE models in HSPICE. The simulation results show that the proposed circuits effectively lower the active power, reduce the total leakage current, and enhance speed under similar noise immunity conditions. The active power of the two proposed circuits can be reduced by up to 8. 8% and 11.8% while enhancing the speed by 9.5% and 13.7% as compared to dual Vt domino OR gates with no gating stage. At the same time,the total leakage currents are also reduced by up to 80.8% and 82.4% ,respectively. Based on the simulation results,the state of the evaluation node is also discussed to reduce the total leakage currents of dual Vt dominos.
文摘Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.
文摘Based on the proper assumptions and approximations, the coupling mechanism of the electromagnetic acoustic transducer (EMAT) for ultrasonic generation within ferromagnetic material was studied by analyzing the eddy current distribution, Lorentz force, magnetostriction force and magnetization force. Some useful numerical calculations are presented to explain the EMAT behavior with general geometric arrangements. It is indicated that for the ferromagnetic material the magnetostriction effect dominates the EMAT phenomenon for ultrasonic wave generation in low magnetic field intensity, while the material does not reach its magnetizing saturation. But, with the increase of the bias magnetic field and saturation, the magnetostrictive terms will make no contributions to the ultrasonic generation and the Lorentz force becomes the only exciting mechanism. It is important to determine both the Lorentz and magnetostriction forces and select the appropriate working manner for achieving an optimized design.