本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散...本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散射的计算,使得GRECO方法可以快速计算具有凹腔结构目标的电磁散射.本方法对于目标识别和逆合成孔径成像等方面的研究具有重要的应用价值.展开更多
随着计算电磁学和计算机技术的迅速发展,电磁计算在雷达设计中扮演着举足轻重的角色.本文分析了电磁计算在雷达设计中的应用,包括雷达天线设计、馈线及微波网络设计、天线罩设计以及复杂电磁环境雷达天线性能评估,并介绍了有限元法(fini...随着计算电磁学和计算机技术的迅速发展,电磁计算在雷达设计中扮演着举足轻重的角色.本文分析了电磁计算在雷达设计中的应用,包括雷达天线设计、馈线及微波网络设计、天线罩设计以及复杂电磁环境雷达天线性能评估,并介绍了有限元法(finite element method,FEM)、矩量法(method of moment,MoM)和时域有限差分(finite-difference time-domain,FDTD)法三种常用的全波电磁仿真计算方法以及高频近似算法,最后讨论了雷达技术发展对电磁计算的新需求.展开更多
文摘本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散射的计算,使得GRECO方法可以快速计算具有凹腔结构目标的电磁散射.本方法对于目标识别和逆合成孔径成像等方面的研究具有重要的应用价值.
文摘随着计算电磁学和计算机技术的迅速发展,电磁计算在雷达设计中扮演着举足轻重的角色.本文分析了电磁计算在雷达设计中的应用,包括雷达天线设计、馈线及微波网络设计、天线罩设计以及复杂电磁环境雷达天线性能评估,并介绍了有限元法(finite element method,FEM)、矩量法(method of moment,MoM)和时域有限差分(finite-difference time-domain,FDTD)法三种常用的全波电磁仿真计算方法以及高频近似算法,最后讨论了雷达技术发展对电磁计算的新需求.