The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates fr...The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed.展开更多
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen...A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.展开更多
The generation of oxide charge for 4nm pMOSFETs under hot-carrier stress is investigated by the charge pumping measurements.Firstly,the direct experimental evidences of logarithmic time dependence of hole trapping is ...The generation of oxide charge for 4nm pMOSFETs under hot-carrier stress is investigated by the charge pumping measurements.Firstly,the direct experimental evidences of logarithmic time dependence of hole trapping is observed for pMOSFETs with different channel lengths under hot-carrier stress.Thus,the relationships of oxide charge generation,including electron trapping and hole trapping effects,with different stress voltages and channel lengths are analyzed.It is also found that there is a two-step process in the generation of oxide charge for pMOSFETs.For a short stress time,electron trapping is predominant,whereas for a long stress time,hole trapping dominates the generation of oxide charge.展开更多
MoS2/ZnIn2S4composites with MoS2anchored on the surface of ZnIn2S4microspheres were synthesized by a two‐step hydrothermal process.The obtained samples were characterized by X‐ray diffraction,field emission scanning...MoS2/ZnIn2S4composites with MoS2anchored on the surface of ZnIn2S4microspheres were synthesized by a two‐step hydrothermal process.The obtained samples were characterized by X‐ray diffraction,field emission scanning electron microscopy,energy dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,X‐ray photoelectron spectroscopy,Raman spectroscopy,ultraviolet–visible diffuse reflectance absorption spectroscopy,nitrogen adsorption–desorption measurements,photoluminescence spectroscopy,and photoelectrochemical tests.The influence of the loading of MoS2on the photocatalytic H2evolution activity was investigated using lactic acid as a sacrificial reagent.A H2evolution rate of343μmol/h was achieved under visible light irradiation over the1wt%MoS2/ZnIn2S4composite,corresponding to an apparent quantum efficiency of about3.85%at420nm monochromatic light.The marked improvement of the photocatalytic H2evolution activity compared with ZnIn2S4can be ascribed to efficient transfer and separation of photogenerated charge carriers and facilitation of the photocatalytic H2evolution reaction at the MoS2active sites.展开更多
In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical th...In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.展开更多
A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrai...A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.展开更多
A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine re...A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation.展开更多
Along with the expanding of span of cable-stayed bridge,wind load becomes a more and more important controlling factor for bridge the design.A very large proportion of the wind load acting on cables has exceeded that ...Along with the expanding of span of cable-stayed bridge,wind load becomes a more and more important controlling factor for bridge the design.A very large proportion of the wind load acting on cables has exceeded that acting on deck.There was not any detailed prescript in Chinese code for calculation of longitudinal wind load on cables due to lack of theoretical research and experiment,and conservative simplified calculation was adopted during design,which leads to conservative and uneconomical design of structures.To resolve this problem,cable force experiment was carried out during the design of Sutong Bridge.By comparing with international research results,the calculation formula of longitudinal wind drag coefficient for cables was advanced to fill the blank of bridge wind resistant code of China,and has already been adopted in the Highway Bridge Wind Resistant Design Code(JTG/T D60-01-2004)with great significance for bridge engineering.展开更多
The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load...The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.展开更多
Electrical conductivity and dielectric properties of bismuth aluminate, Bi12.47Al0.53O19.5 (BAO), were investigated in the frequency range from 1 Hz to 1 MHz in the temperature range from 420 K to 5 K. In the temper...Electrical conductivity and dielectric properties of bismuth aluminate, Bi12.47Al0.53O19.5 (BAO), were investigated in the frequency range from 1 Hz to 1 MHz in the temperature range from 420 K to 5 K. In the temperature range from 360 K to 220 K the real part of the complex ac electrical conductivity and dielectric constant follow the universal dielectric response (UDR), being typical for hopping or tunneling of localized charge carriers. A detailed analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for tunneling of small polarons revealed that below 360 K this mechanism governs the charge transport in this material. The characteristic parameters for polarons, W∞, ιo, and ι0 were determined.展开更多
Ti-4Al-1.5Mn dual phase titanium alloy sheet was spot welded by pneumatic resistance spot welder.The effects of different welding parameters on shear load and nugget diameter were studied.The results show that the max...Ti-4Al-1.5Mn dual phase titanium alloy sheet was spot welded by pneumatic resistance spot welder.The effects of different welding parameters on shear load and nugget diameter were studied.The results show that the maximum shear load of solder joint increases first and then decreases with the increase of electrode pressure and welding current,while the nugget diameter increases with the increase of electrode pressure and welding current.Electrode pressure of 0.20 MPa and welding current of 46 A are the optimal process parameters,under which the maximum shear load of solder joint reaches 8.80 kN.The microstructure of nugget zone is coarse acicular martensite,and the solder joints fail in a mixed mode of intergranular brittle-ductile fracture.展开更多
Charge carriers in organic semiconductor are different from that of traditional inorganic semiconductor. Based on three-current model, considering electrical field effect, we present a theoretical model to discuss spi...Charge carriers in organic semiconductor are different from that of traditional inorganic semiconductor. Based on three-current model, considering electrical field effect, we present a theoretical model to discuss spin-polarized injection from ferromagnetic electrode into organic semiconductor by analyzing electrochemical potential both in ferromagnetic electrode and organic semiconductors. The calculated result of this model shows effects of electrode's spin polarization, equilibrium value of polarons ratio, interracial conductance, bulk conductivity of materials and electrical field. It is found that we could get decent spin polarization with common ferromagnetic electrode by increasing equilibrium value of polarons ratio. We also find that large and matched bulk conductivity of organic semiconductor and electrode, small spin-dependent interracial conductance, and enough large electrical field are critical factors for increasing spin polarization.展开更多
The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity ex...The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.展开更多
In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stre...In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stress (PHz). A number of additional loads have been identified by means of tests with rolling bearings. These can be small direct currents as a result of electrostatic charge or large alternating currents from inverter-fed drives that unintentionally flow through the bearing. WEC damages can also be initiated by a pure mechanical additional load which is dependent on factors including the bearing kinematics but also on the dynamics of the drive train. The current state of knowledge on this subject is presented and taken as the basis for developing a hypothesis on the WEC damage mechanism. If load situations critical for WEC cannot be avoided, the risk of WEC can be considerably reduced by the selection of suitable materials and coatings as well as, in some cases, of suitable lubricants.展开更多
The aim of the article concerns to the achieved research results regarding the viability of a megawatt-class space power plant based on the Rankine cycle for which the main objectives are to highlight the key issues r...The aim of the article concerns to the achieved research results regarding the viability of a megawatt-class space power plant based on the Rankine cycle for which the main objectives are to highlight the key issues responsible for improving the Rankine cycle efficiency. Two working fluids are studied (water and ammonia) on the basis of its well known characteristics. Cycles operating under top and bottom temperatures approaching the state of the art technology associated to cooling fluid reservoirs are key to improve the efficiency. With such strategy, the achieved thermal efficiency increases more than 20% with respect to conventional power plants. Mentioned benefits associated to the strategy based on the reduction of the required payload capacity, the condenser radiation surface and the power plant mass represent the main advantages of the proposed innovation techniques.展开更多
基金Projects(2010CB631005,2011CB606105)support by the National Basic Research Program of ChinaProjects(11232008,91216301,11227801,11172151)supported by the National Natural Science Foundation of ChinaProject supported by Tsinghua University Initiative Scientific Research Program
文摘The buckling behavior of a typical structure consisting of a micro constantan wire and a polymer membrane under coupled electrical-mechanical loading was studied. The phenomenon that the constantan wire delaminates from the polymer membrane was observed after unloading. The interfacial toughness of the constantan wire and the polymer membrane was estimated. Moreover, several new instability modes of the constantan wire could be further triggered based on the buckle-driven delamination. After electrical loading and tensile loading, the constantan wire was likely to fracture based on buckling. After electrical loading and compressive loading, the constantan wire was easily folded at the top of the buckling region. On the occasion, the constantan wire buckled towards the inside of the polymer membrane under electrical-compressive loading. The mechanisms of these instability modes were analyzed.
文摘A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.
文摘The generation of oxide charge for 4nm pMOSFETs under hot-carrier stress is investigated by the charge pumping measurements.Firstly,the direct experimental evidences of logarithmic time dependence of hole trapping is observed for pMOSFETs with different channel lengths under hot-carrier stress.Thus,the relationships of oxide charge generation,including electron trapping and hole trapping effects,with different stress voltages and channel lengths are analyzed.It is also found that there is a two-step process in the generation of oxide charge for pMOSFETs.For a short stress time,electron trapping is predominant,whereas for a long stress time,hole trapping dominates the generation of oxide charge.
基金supported by the National Natural Science Foundation of China(51302200)~~
文摘MoS2/ZnIn2S4composites with MoS2anchored on the surface of ZnIn2S4microspheres were synthesized by a two‐step hydrothermal process.The obtained samples were characterized by X‐ray diffraction,field emission scanning electron microscopy,energy dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,X‐ray photoelectron spectroscopy,Raman spectroscopy,ultraviolet–visible diffuse reflectance absorption spectroscopy,nitrogen adsorption–desorption measurements,photoluminescence spectroscopy,and photoelectrochemical tests.The influence of the loading of MoS2on the photocatalytic H2evolution activity was investigated using lactic acid as a sacrificial reagent.A H2evolution rate of343μmol/h was achieved under visible light irradiation over the1wt%MoS2/ZnIn2S4composite,corresponding to an apparent quantum efficiency of about3.85%at420nm monochromatic light.The marked improvement of the photocatalytic H2evolution activity compared with ZnIn2S4can be ascribed to efficient transfer and separation of photogenerated charge carriers and facilitation of the photocatalytic H2evolution reaction at the MoS2active sites.
文摘In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.
基金Project (Nos. 60074040 and 6022506) supported by the NationalNatural Science Foundation of China
文摘A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.
文摘A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation.
基金National Science and Technology Support Program of China(No.2006BAG04B01)
文摘Along with the expanding of span of cable-stayed bridge,wind load becomes a more and more important controlling factor for bridge the design.A very large proportion of the wind load acting on cables has exceeded that acting on deck.There was not any detailed prescript in Chinese code for calculation of longitudinal wind load on cables due to lack of theoretical research and experiment,and conservative simplified calculation was adopted during design,which leads to conservative and uneconomical design of structures.To resolve this problem,cable force experiment was carried out during the design of Sutong Bridge.By comparing with international research results,the calculation formula of longitudinal wind drag coefficient for cables was advanced to fill the blank of bridge wind resistant code of China,and has already been adopted in the Highway Bridge Wind Resistant Design Code(JTG/T D60-01-2004)with great significance for bridge engineering.
文摘The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.
文摘Electrical conductivity and dielectric properties of bismuth aluminate, Bi12.47Al0.53O19.5 (BAO), were investigated in the frequency range from 1 Hz to 1 MHz in the temperature range from 420 K to 5 K. In the temperature range from 360 K to 220 K the real part of the complex ac electrical conductivity and dielectric constant follow the universal dielectric response (UDR), being typical for hopping or tunneling of localized charge carriers. A detailed analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for tunneling of small polarons revealed that below 360 K this mechanism governs the charge transport in this material. The characteristic parameters for polarons, W∞, ιo, and ι0 were determined.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institution and Beijing Institute of Aeronautical Materials(No.KZ82171509)。
文摘Ti-4Al-1.5Mn dual phase titanium alloy sheet was spot welded by pneumatic resistance spot welder.The effects of different welding parameters on shear load and nugget diameter were studied.The results show that the maximum shear load of solder joint increases first and then decreases with the increase of electrode pressure and welding current,while the nugget diameter increases with the increase of electrode pressure and welding current.Electrode pressure of 0.20 MPa and welding current of 46 A are the optimal process parameters,under which the maximum shear load of solder joint reaches 8.80 kN.The microstructure of nugget zone is coarse acicular martensite,and the solder joints fail in a mixed mode of intergranular brittle-ductile fracture.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.Y2006A18 the Key Programme of Nature Foundation of Shandong Jianzhu University under Grant No.XZ050102
文摘Charge carriers in organic semiconductor are different from that of traditional inorganic semiconductor. Based on three-current model, considering electrical field effect, we present a theoretical model to discuss spin-polarized injection from ferromagnetic electrode into organic semiconductor by analyzing electrochemical potential both in ferromagnetic electrode and organic semiconductors. The calculated result of this model shows effects of electrode's spin polarization, equilibrium value of polarons ratio, interracial conductance, bulk conductivity of materials and electrical field. It is found that we could get decent spin polarization with common ferromagnetic electrode by increasing equilibrium value of polarons ratio. We also find that large and matched bulk conductivity of organic semiconductor and electrode, small spin-dependent interracial conductance, and enough large electrical field are critical factors for increasing spin polarization.
文摘The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.
文摘In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stress (PHz). A number of additional loads have been identified by means of tests with rolling bearings. These can be small direct currents as a result of electrostatic charge or large alternating currents from inverter-fed drives that unintentionally flow through the bearing. WEC damages can also be initiated by a pure mechanical additional load which is dependent on factors including the bearing kinematics but also on the dynamics of the drive train. The current state of knowledge on this subject is presented and taken as the basis for developing a hypothesis on the WEC damage mechanism. If load situations critical for WEC cannot be avoided, the risk of WEC can be considerably reduced by the selection of suitable materials and coatings as well as, in some cases, of suitable lubricants.
文摘The aim of the article concerns to the achieved research results regarding the viability of a megawatt-class space power plant based on the Rankine cycle for which the main objectives are to highlight the key issues responsible for improving the Rankine cycle efficiency. Two working fluids are studied (water and ammonia) on the basis of its well known characteristics. Cycles operating under top and bottom temperatures approaching the state of the art technology associated to cooling fluid reservoirs are key to improve the efficiency. With such strategy, the achieved thermal efficiency increases more than 20% with respect to conventional power plants. Mentioned benefits associated to the strategy based on the reduction of the required payload capacity, the condenser radiation surface and the power plant mass represent the main advantages of the proposed innovation techniques.