Abstract: With a determinate danger zone and evacuation demand caused by an emergency, an optimization method for the evacuation zone with network reconfiguration based on dynamic simulation is proposed. The method c...Abstract: With a determinate danger zone and evacuation demand caused by an emergency, an optimization method for the evacuation zone with network reconfiguration based on dynamic simulation is proposed. The method contains three modules. First, the network in the evacuation zone is optimized by a model with the integrated strategy of lane reversal and intersection conflict elimination. Secondly, the dynamic evacuation simulation model based on the cell transmission model is applied to simulate the dynamic propagation process of evacuated vehicles in the network in the evacuation zone. The evacuation time for all evacuated vehicles leaving the danger zone is obtained and the setting of the current evacuation zone is fed back. Thirdly, the arrival distributions of evacuated vehicles at critical intersections of the evacuation zone are also obtained to estimate the delay at critical intersection to determine whether the intersection should be taken as the critical intersection in the next iteration. The evacuation zone is expanded gradually through iteration, and the reasonable evacuation zone and the optimal evacuation network is confirmed. Based on the survey of the parking lot and urban street network around Nanjing Olympic Sports Center, the models and the iterative algorithm were applied to obtain the optimal plan of the evacuation zone with network reconfiguration in an evacuation situation to verify the validity of the proposed method.展开更多
To understand genetic variation and population dispersal in the Yangtze vole Microtusfortis calamorum distributed in the Dongting Lake region, 144 individuals were collected from six habitat patches. The mitochondrial...To understand genetic variation and population dispersal in the Yangtze vole Microtusfortis calamorum distributed in the Dongting Lake region, 144 individuals were collected from six habitat patches. The mitochondrial DNA control region was sequenced and 17 haplotypes were observed. Of the six investigated populations, haplotype and nucleotide diversities of those from larger patches were higher than those from smaller patches. Nonparametric correlation analysis showed that patch size had a positive correlation with haplotype diversity (r = 0.943, P 〈 0.01). A neighbour-joining tree of the 17 haplotypes showed no geo- graphic genetic structure among the six populations. Analysis of isolation by distance showed that genetic differentiation among the six populations was not positively related to geographic distance. Analysis of mismatch distribution indicated that the voles had passed through a population expansion. The pattern of haplotype distribution in the Changsha population suggests that the population was established by a founder effect展开更多
基金The National Natural Science Foundation of China(No.51408190)
文摘Abstract: With a determinate danger zone and evacuation demand caused by an emergency, an optimization method for the evacuation zone with network reconfiguration based on dynamic simulation is proposed. The method contains three modules. First, the network in the evacuation zone is optimized by a model with the integrated strategy of lane reversal and intersection conflict elimination. Secondly, the dynamic evacuation simulation model based on the cell transmission model is applied to simulate the dynamic propagation process of evacuated vehicles in the network in the evacuation zone. The evacuation time for all evacuated vehicles leaving the danger zone is obtained and the setting of the current evacuation zone is fed back. Thirdly, the arrival distributions of evacuated vehicles at critical intersections of the evacuation zone are also obtained to estimate the delay at critical intersection to determine whether the intersection should be taken as the critical intersection in the next iteration. The evacuation zone is expanded gradually through iteration, and the reasonable evacuation zone and the optimal evacuation network is confirmed. Based on the survey of the parking lot and urban street network around Nanjing Olympic Sports Center, the models and the iterative algorithm were applied to obtain the optimal plan of the evacuation zone with network reconfiguration in an evacuation situation to verify the validity of the proposed method.
文摘To understand genetic variation and population dispersal in the Yangtze vole Microtusfortis calamorum distributed in the Dongting Lake region, 144 individuals were collected from six habitat patches. The mitochondrial DNA control region was sequenced and 17 haplotypes were observed. Of the six investigated populations, haplotype and nucleotide diversities of those from larger patches were higher than those from smaller patches. Nonparametric correlation analysis showed that patch size had a positive correlation with haplotype diversity (r = 0.943, P 〈 0.01). A neighbour-joining tree of the 17 haplotypes showed no geo- graphic genetic structure among the six populations. Analysis of isolation by distance showed that genetic differentiation among the six populations was not positively related to geographic distance. Analysis of mismatch distribution indicated that the voles had passed through a population expansion. The pattern of haplotype distribution in the Changsha population suggests that the population was established by a founder effect