期刊文献+
共找到535篇文章
< 1 2 27 >
每页显示 20 50 100
基于改进ShuffleNet v2的轻量化番茄叶片病害识别 被引量:1
1
作者 李大华 仲婷 +1 位作者 王笋 于晓 《江苏农业科学》 北大核心 2024年第3期220-228,共9页
番茄大面积种植导致叶片部位被病虫害侵蚀面积不一、侵蚀种类多样化等问题,为了满足在资源有限的硬件设备上实现对番茄叶片病害准确识别,提出改进ShuffleNet v2模型。首先对基本单元进行改进,提出SA-stage模块,使模型密切关注叶片相关... 番茄大面积种植导致叶片部位被病虫害侵蚀面积不一、侵蚀种类多样化等问题,为了满足在资源有限的硬件设备上实现对番茄叶片病害准确识别,提出改进ShuffleNet v2模型。首先对基本单元进行改进,提出SA-stage模块,使模型密切关注叶片相关特征信息的同时减小了参数量和计算量;其次提出LFN轻量化特征融合模块,实现浅层和深层网络的上下文信息交互;接着引入RFB-s轻量化特征增强模块,增强小目标病害的特征提取;最后将SPD-Conv代替普通卷积和最大池化层,降低图像分辨率的同时保留了番茄叶片病害小目标的细粒度信息。试验结果表明,改进ShuffleNet v2模型在10种番茄叶片病害图像上进行测试,准确率和平均召回率分别达到了96.55%、96.40%,较原模型分别提高了4.44、3.70百分点;参数量和计算量分别为348154、38.75 MB,较原模型分别减少3888、3.88 MB。相比于其他分类模型AlexNet、ResNet50、MobileNet v3等,改进ShuffleNet v2模型不仅准确率最高、参数量和计算量最小,而且权重最小,仅为1.51 MB。该研究提出的改进ShuffleNet v2模型具备在资源有限的移动设备上部署的条件,满足实时、准确地识别番茄叶片病害。 展开更多
关键词 番茄 叶片病害 病害识别 轻量化 参数量
下载PDF
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法
2
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进Faster R-CNN 改进U-Net
下载PDF
基于统计指标的曲线桥支座脱空病害识别方法
3
作者 朱劲松 鲁俊男 杨祥 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期225-231,405,共8页
为快速评估曲线连续梁桥支座健康状态,提出了基于时程统计指标的桥梁支座脱空病害识别方法。首先,提取行车激励下桥面测点加速度信号的20个时程统计指标,通过概率统计的方式,得出各统计指标的置信区间;其次,根据各时程统计指标对支座脱... 为快速评估曲线连续梁桥支座健康状态,提出了基于时程统计指标的桥梁支座脱空病害识别方法。首先,提取行车激励下桥面测点加速度信号的20个时程统计指标,通过概率统计的方式,得出各统计指标的置信区间;其次,根据各时程统计指标对支座脱空的敏感程度不同,采用熵值法确定各统计指标的权重分配值;最后,根据各测点异常指标数计算损伤指数,综合判断测点附近支座是否出现脱空病害。为验证方法的有效性,以某3×25 m曲线连续梁桥为工程背景,建立车桥耦合动力学模型进行分析验证。结果表明:该方法可以准确识别脱空支座所在位置,并且可以有效识别较小的损伤;相比于中间支座脱空,时程统计指标对端支座脱空更为敏感。 展开更多
关键词 病害识别 车桥耦合模型 时程统计指标 支座脱空
下载PDF
基于自适应权重优化的多任务深度学习模型在甘蔗病害识别中的应用
4
作者 李冬睿 邱尚明 杨善友 《智能计算机与应用》 2024年第3期163-167,共5页
针对农业领域中甘蔗病害识别的准确率和任务间平衡的问题,提出一种基于自适应权重优化的多任务深度学习模型。该模型采用包含3种病害和1种健康状态的甘蔗叶片图像数据集,通过卷积神经网络(CNN)和多任务学习(MTL)实现病害识别。在模型训... 针对农业领域中甘蔗病害识别的准确率和任务间平衡的问题,提出一种基于自适应权重优化的多任务深度学习模型。该模型采用包含3种病害和1种健康状态的甘蔗叶片图像数据集,通过卷积神经网络(CNN)和多任务学习(MTL)实现病害识别。在模型训练过程中,为应对不同任务间的不平衡问题,引入了自适应权重优化方法。实验结果表明,该模型能显著提高甘蔗病害识别准确率,并在多任务之间实现平衡,为甘蔗智能化种植发展提供一定的借鉴。 展开更多
关键词 深度学习 甘蔗病害识别 多任务学习 自适应权重优化
下载PDF
基于改进Vision Transformer网络的农作物病害识别方法 被引量:3
5
作者 王杨 李迎春 +6 位作者 许佳炜 王傲 马唱 宋世佳 谢帆 赵传信 胡明 《小型微型计算机系统》 CSCD 北大核心 2024年第4期887-893,共7页
基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特... 基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特征序列的自注意力过于关注自身的问题.实验结果表明,本文的EPEMMSA-ViT模型对比标准ViT模型可以更高效的从零学习;当添加预训练权重训练网络时,EPEMMSA-ViT模型在数据增强的PlantVillage番茄子集上能够得到99.63%的分类准确率;在添加椒盐噪声的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了6.08%、9.78%、29.78%和12.41%;在添加均值模糊的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了18.92%、31.11%、20.37%和19.58%. 展开更多
关键词 农作物病害识别 深度卷积神经网络 视觉Transformer 自注意力 局部归纳偏置
下载PDF
基于改进轻量化网络MobileViT的苹果树叶病害识别 被引量:2
6
作者 马维娣 吴钦木 《江苏农业科学》 北大核心 2024年第3期229-236,共8页
针对传统的苹果树叶病害识别模型准确率低,参数数量多和移动端部署困难的问题,提出了一种基于改进轻量化网络MobileViT的的苹果树叶病害识别方法。该网络模型以MobileViT作为主干网络,高效编码全局信息,同时引入MV2模块编码局部信息,将... 针对传统的苹果树叶病害识别模型准确率低,参数数量多和移动端部署困难的问题,提出了一种基于改进轻量化网络MobileViT的的苹果树叶病害识别方法。该网络模型以MobileViT作为主干网络,高效编码全局信息,同时引入MV2模块编码局部信息,将原MobileViT网络结构中的Swish激活函数替换为SMU激活函数提高网络性能,并在全连接层后添加Dropout层防止数据过拟合。针对常见的多病症叶片、锈病叶片等苹果树叶病害进行识别。试验结果表明,改进后的MobileViT相对于其他轻量级网络识别准确率高,相对于重量级网络更轻量、反应更迅速,测试集识别的准确率达到95.73%,参数数量所占显存空间仅为5.6 MB,单张苹果树叶病害图片的响应时间为4.32 ms。最终将模型部署在在移动设备,落地实现成为可能。 展开更多
关键词 苹果树 病害识别 SMU 轻量级 MV2 MobileViT
下载PDF
路面病害识别系统在道路病害采集中的应用
7
作者 方黎刚 陈晓鹏 +2 位作者 郭天宇 林振涵 潘菊梅 《市政设施管理》 2024年第3期15-17,共3页
通过卷积神经网络智能算法训练巡检车采集的道路视频图像,能有效识别裂缝、坑槽、龟裂、破碎、修补等多种道路病害类型。根据行业要求,进行信息化平台功能设计,开发路面病害识别系统。将软硬件功能相互结合,实现道路病害自动识别及病害... 通过卷积神经网络智能算法训练巡检车采集的道路视频图像,能有效识别裂缝、坑槽、龟裂、破碎、修补等多种道路病害类型。根据行业要求,进行信息化平台功能设计,开发路面病害识别系统。将软硬件功能相互结合,实现道路病害自动识别及病害处理闭环等多种信息可视化展示。目前,已在杭州市主干道与快速路进行试点应用。同时,将道路病害智能巡查设备与现有多功能智能养护车进行集成,实现道路路面质量的定性和定量评定。 展开更多
关键词 多种类型病害识别 病害识别系统 可视化展示
下载PDF
融合迁移学习和知识蒸馏的轻量级马铃薯叶片病害识别模型的构建方法 被引量:1
8
作者 章广传 李彤 +2 位作者 高泉 叶荣 何云 《江苏农业科学》 北大核心 2024年第4期197-206,共10页
轻量级深度学习模型常被部署于移动端或物联网端,以实现算力资源受限条件下马铃薯病害的识别。但轻量级模型网络层数较少,模型特征提取能力有限,无法实现相似表型特征的精确提取。为解决上述问题,提出一种轻量级残差网络模型的构建方法... 轻量级深度学习模型常被部署于移动端或物联网端,以实现算力资源受限条件下马铃薯病害的识别。但轻量级模型网络层数较少,模型特征提取能力有限,无法实现相似表型特征的精确提取。为解决上述问题,提出一种轻量级残差网络模型的构建方法,该方法融合迁移学习和知识蒸馏策略训练模型,在教师模型上使用迁移学习策略缩短教师模型的训练时间,并将ResNet18模型进行模型剪枝,使用降采样的方法提高模型识别准确率,最终在保证轻量化的前提下,实现对马铃薯叶片病害类别的精准识别。在马铃薯叶片数据集上进行试验,结果表明,本研究方法构建的轻量级模型的识别准确率相较于Resnet18提高1.55百分点,模型大小缩小49.18%;相较于目前农作物病害识别领域,常用的轻量级模型MobileNetV3在模型大小相近的情况下,识别准确率提高2.91百分点。该模型能够满足大部分实际应用下的场景,可为部署在物联网和移动端设备上的模型提供参考。 展开更多
关键词 马铃薯 病害识别 轻量级模型 迁移学习 知识蒸馏
下载PDF
基于计算机视觉的植物病害识别方法综述 被引量:1
9
作者 于明 郭志永 王岩 《科学技术与工程》 北大核心 2024年第12期4811-4823,共13页
病害识别是计算机视觉技术在农业领域的重要应用之一,对及时发现和早期预防植物病害起着关键作用。近年来,随着病害识别方法的不断演进,病害识别性能有了显著提高,但自然条件下病害特征提取困难、病害严重程度难以区分等问题依然存在。... 病害识别是计算机视觉技术在农业领域的重要应用之一,对及时发现和早期预防植物病害起着关键作用。近年来,随着病害识别方法的不断演进,病害识别性能有了显著提高,但自然条件下病害特征提取困难、病害严重程度难以区分等问题依然存在。为了在现有方法的基础上进一步探索病害识别的新思路,先是针对不同识别目标,分析病害识别和病害严重程度识别的研究现状。然后从视觉特征类型和学习方式两个角度对植物病害识别方法进行全面的比较与研究,指出深度模型是当前植物病害识别的主流方法,融合多源信息和结合不同的机器学习方式是改进植物病害识别的重要手段,并将不同识别方法在主流数据集上的性能进行对比和分析。最后对未来发展方向进行展望。 展开更多
关键词 植物病害识别 计算机视觉 卷积神经网络 特征提取 注意力机制
下载PDF
基于改进轻量化YOLO v5n的番茄叶片病害识别方法
10
作者 王娜 陈勇 +1 位作者 崔艳荣 胡蓉华 《江苏农业科学》 北大核心 2024年第8期192-199,共8页
针对现有番茄叶片病害识别存在背景复杂、识别准确率低、模型参数量大、计算量大以及难以部署至移动设备或嵌入式设备等问题,提出一种改进的轻量化YOLO v5n的番茄叶片病害识别方法。首先收集细菌性斑疹病、早疫病、晚疫病、叶霉病、斑... 针对现有番茄叶片病害识别存在背景复杂、识别准确率低、模型参数量大、计算量大以及难以部署至移动设备或嵌入式设备等问题,提出一种改进的轻量化YOLO v5n的番茄叶片病害识别方法。首先收集细菌性斑疹病、早疫病、晚疫病、叶霉病、斑枯病、褐斑病等6种常见番茄叶片病害图像以及番茄健康叶片图像,对图像进行镜像翻转、高斯模糊等数据增强方式增加样本多样性,提升模型识别和泛化能力。接着在YOLO v5n网络基础上,选择采用轻量化的C3Ghost模块替换C3模块以压缩卷积过程中的计算量、模型权重和大小,同时在颈部网络中融合轻量级卷积技术GSConv和VOV-GSCSP模块,在增强特征提取能力的同时降低模型参数量。最后引入PAGCP算法对改进后的模型进行全局通道剪枝压缩参数量并减少训练开销。试验结果表明,改进后的YOLO v5n平均精度均值达到99.0%,参数量减少66.67%,计算量降低了2.6 G,模型权重压缩了2.23 MB。本研究提出的番茄叶片病害识别方法在降低了模型大小、参数量、计算量的同时仍保持较高的识别精度,为移动设备上实现番茄叶片病害识别提供技术参考。 展开更多
关键词 YOLO v5n 番茄病害识别 轻量化 C3Ghost GSConv VOV-GSCSP PAGCP
下载PDF
基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别
11
作者 刘欢 李云红 +4 位作者 张蕾涛 郭越 苏雪平 朱耀麟 侯乐乐 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第9期1757-1767,1780,共12页
针对复杂环境下苹果叶片病害图像背景杂乱、病斑大小不一,以及现有模型参数多、计算量大的问题,提出基于注意力和多尺度特征融合的苹果叶片病害识别网络(MA-ConvNext).通过引入多尺度空间通道重组块(MSCB)和融合三分支注意力机制的特征... 针对复杂环境下苹果叶片病害图像背景杂乱、病斑大小不一,以及现有模型参数多、计算量大的问题,提出基于注意力和多尺度特征融合的苹果叶片病害识别网络(MA-ConvNext).通过引入多尺度空间通道重组块(MSCB)和融合三分支注意力机制的特征提取模块(TAFB),有效提取苹果叶片病害图像不同尺度的特征,增强模型对叶片病斑的关注.采用分步关系知识蒸馏方法,将“教师”网络(MA-ConvNext)和“中间”网络(DenseNet121)融合,指导“学生”网络(EfficientNet-B0)训练,实现模型轻量化.实验结果表明,MA-ConvNext网络识别准确率为99.38%,较ResNet50、MobileNet-V3和EfficientNet-V2网络分别提高了3.98个百分点、7.55个百分点和4.27个百分点.经过分步关系知识蒸馏后,识别准确率较蒸馏前提高了1.76个百分点,并且具有更小的网络规模和参数量,分别为1.56×10^(7)、5.29×10^(6).所提方法能为后续精准农业的病虫害检测提供新思路和技术支持. 展开更多
关键词 苹果叶片病害识别 注意力 多尺度特征融合 分步关系 知识蒸馏
下载PDF
基于卷积神经网络的番茄叶部病害识别方法
12
作者 刘峻渟 周云成 +2 位作者 吴琼 吴雄伟 王昌远 《河南农业大学学报》 CAS CSCD 北大核心 2024年第2期287-297,共11页
【目的】利用卷积神经网络构建作物病害识别模型,提高识别性能,解决作物病害识别性能低、泛化效果差等问题。【方法】通过数据增广技术增加样本多样性,引入聚焦损失改进模型学习目标,解决样本非均衡问题,分析比较不同卷积神经网络结构... 【目的】利用卷积神经网络构建作物病害识别模型,提高识别性能,解决作物病害识别性能低、泛化效果差等问题。【方法】通过数据增广技术增加样本多样性,引入聚焦损失改进模型学习目标,解决样本非均衡问题,分析比较不同卷积神经网络结构的识别性能,并用类激活图生成技术度量模型的可靠性。在番茄叶部病害数据集上验证方法的有效性。【结果】应用数据增广技术后,模型在简单背景样本上的识别准确率提高了1.0%,在复杂背景样本上提高了12.5%;聚焦损失使模型的准确率提高了0.1%;该模型的识别准确率为99.8%,对各类病害的召回率在97.3%以上;应用类激活图技术生成的显著性图可有效标识模型在识别过程中的重点关注区域。【结论】该方法能够有效解决病害图像样本非均衡问题,提高了病害识别模型的泛化性能,同时类激活图可以用于分析模型的可靠性,从而为番茄叶部病害防治提供参考。 展开更多
关键词 番茄 叶部病害 病害识别 卷积神经网络 数据增广 聚焦损失
下载PDF
基于Cutout-ResNet50的野外环境水稻病害识别系统
13
作者 黄思琪 张正华 +1 位作者 郭丽瑞 李斌 《扬州大学学报(自然科学版)》 CAS 2024年第3期37-45,共9页
针对水稻病害图像在野外环境下存在的光照不均、明暗变化明显、因遮挡导致目标特征缺失和噪声重叠,以及野外环境的水稻数据集少且质量差等问题,提出一种基于改进ResNet50算法的野外环境水稻病害识别方法,并设计识别系统.在传统ResNet50... 针对水稻病害图像在野外环境下存在的光照不均、明暗变化明显、因遮挡导致目标特征缺失和噪声重叠,以及野外环境的水稻数据集少且质量差等问题,提出一种基于改进ResNet50算法的野外环境水稻病害识别方法,并设计识别系统.在传统ResNet50算法的基础上采用迁移学习技术对学习知识跨领域迁移,缓解数据集样本不足和不均衡造成的过拟合现象;利用Cutout增强方法对特征信息随即筛选,模拟复杂的野外环境,加强算法的泛化能力;对学习率采用余弦退火优化策略,提高算法的稳定性.结果表明:改进的ResNet50算法在小型水稻病害数据集上的识别准确率达97.24%,明显高于传统ResNet50算法,且该改进方法亦能提升VGG16、GoogLeNet和MobileNetV3-large等其他卷积神经网络算法的模型识别性能.将该模型部署于系统,可为水稻病害识别在实际应用工程中的发展提供技术参考. 展开更多
关键词 水稻 病害识别 Cutout增强 迁移学习 ResNet50
下载PDF
基于改进MobileNet v3的苹果叶片病害识别研究
14
作者 李豫晋 沈陆明 +2 位作者 何少芳 余文强 滕明洪 《江苏农业科学》 北大核心 2024年第12期224-231,共8页
为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集... 为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集;然后在MobileNet v3网络核心倒残差结构的升维部分引入全维动态卷积,以加强对不同维度注意力权重的学习,从而增强网络的拟合能力;最后在降维部分引入修改后的ConvNext Block模块,减少信息损失并增加全局感受野。采用PyTorch作为分类网络的深度学习框架,使用交叉熵损失函数作为分类任务的损失函数,Adam作为优化器,通过多组对比试验可知,MobileNet v1、MobileNet v2、ResNet34、MobileNet v3以及改进后的MobileNet v3 ODConvNext网络的准确率分别为94.5%、95.7%、97.2%、96.9%及97.5%。可见,MobileNet v3 ODConvNet网络拥有最高的Top-1准确率,相较于MobileNet v3网络和结构更为复杂的ResNet34网络分别提升了0.6、0.3百分点;在运算频率方面,相对于MobileNet v3网络仅增加了1.00×10^(6)次/s,并且仅为ResNet34网络参数量的11.84%。因此,该试验结果证明了改进后的MobileNet v3 ODConvNext模型具有更加轻量级和更高准确率的优点,满足在移动端真实场景下进行苹果叶片病害识别的要求,有助于苹果叶片病害的防治工作。 展开更多
关键词 苹果叶片 病害识别 MobileNet v3 全维动态卷积 ConvNext 深度学习
下载PDF
基于联邦学习的玉米叶片病害识别方法
15
作者 赵盎然 兰鹏 +2 位作者 任洪泽 吴勇 孙丰刚 《山东农业大学学报(自然科学版)》 北大核心 2024年第5期740-749,共10页
联邦学习可利用分布式数据实现模型共享训练,无需本地数据上传继而可保证数据资产安全,但数据异构导致本地模型产生漂移而难以有效聚合全局模型。为此,本文提出了一种基于联邦学习的分布式病害识别方法G-FedAvg。针对各用户间数据种类... 联邦学习可利用分布式数据实现模型共享训练,无需本地数据上传继而可保证数据资产安全,但数据异构导致本地模型产生漂移而难以有效聚合全局模型。为此,本文提出了一种基于联邦学习的分布式病害识别方法G-FedAvg。针对各用户间数据种类缺失异构导致模型泛化性减弱的问题,通过改进损失函数梯度更新策略,提升用户模型学习捕获全局泛化信息能力;针对数据特征差异导致模型过度拟合,通过自监督预训练,缓解因其所致性能下降。试验以玉米叶片病害识别为导向,并进一步评估病害程度,其结果表明,改进算法G-FedAvg在无需数据上传前提下,取得了与集中学习模型近乎一致的识别性能;与传统联邦学习相比,G-FedAvg的识别准确率与收敛速度有效提升,准确率波动显著降低。因此,所提算法G-FedAvg可有效联合参与用户利用其本地数据完成分布式学习,实现对玉米叶片病害的精准识别。 展开更多
关键词 病害识别 联邦学习 异构数据 梯度更新 自监督学习 玉米叶片
下载PDF
基于改进卷积神经网络的苹果叶片病害识别
16
作者 姜月明 王健 +1 位作者 董光辉 胡彭元 《江苏农业科学》 北大核心 2024年第14期214-221,共8页
为了提高真实条件下苹果叶片病害识别准确度和识别速度,提出了一种基于改进的卷积神经网络苹果叶部病害识别方法,该方法是在卷积神经网络VGG16的基础上进行改进完成的。首先针对5类常见苹果叶片病害图片样本集合,采用数字图像处理算法(... 为了提高真实条件下苹果叶片病害识别准确度和识别速度,提出了一种基于改进的卷积神经网络苹果叶部病害识别方法,该方法是在卷积神经网络VGG16的基础上进行改进完成的。首先针对5类常见苹果叶片病害图片样本集合,采用数字图像处理算法(如旋转照片角度、增强降低图像亮度和锐度、添加高斯噪声等)进行数据集增强完成原有数据集的扩充,扩充后获得26377张苹果叶片病害图像,以增加样本多样性,提高模型的泛化能力。通过对叶片病斑特征的差异进行研究,比较了多种高效的卷积神经网络模型架构,最终选出VGG16网络模型作为基础模型,并对其进行改进,通过添加SK模块以及将全连接层改为全局平均池化,提升了模型的识别准确率以及网络稳定性,同时也加快了模型的收敛速度,提升了苹果叶片病害识别速度。试验表明,改进后的VGG16模型识别准确率高达96.17%,相对于VGG16模型提升了3.55百分点。试验结果表明,本研究为苹果叶片病害识别提供了一种可行的高性能解决方案,可有效提升苹果叶片病害的识别准确度和速度,也为深度学习和人工智能技术在农业信息化领域的应用探索了新的途径。 展开更多
关键词 病害识别 卷积神经网络 迁移学习 图像识别 VGG16模型
下载PDF
基于改进MobileViT的葡萄叶部病害识别模型
17
作者 胡施威 邱林 邓建新 《山东农业科学》 北大核心 2024年第10期159-166,共8页
本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添... 本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添加Dropout层,防止数据出现过拟合现象;最后,选用结合权重衰减的优化器AdamW(Adam with Weight Decay Regularization),更好地控制模型复杂度并提高泛化能力。实验结果显示,相较于MobileViT基础网络,改进后的CD-MobileViT网络在精确率、召回率、F1得分和准确率方面分别提高了1.77、1.85、1.65、1.75个百分点,与其他几种经典网络模型(InceptionV1、MobileNetV2、EfficientNetB0、VGG-16)相比也有不同程度的提升(0.25~1.47个百分点),说明本研究提出的模型在葡萄叶部病害识别上有良好的效果,未来可部署到移动端使用,为葡萄叶部病害的准确识别提供新的解决方案。 展开更多
关键词 葡萄叶部病害识别 MobileViT网络 坐标注意力 AdamW优化器 Dropout层
下载PDF
基于随机增强Swin-Tiny Transformer的玉米病害识别及应用
18
作者 吴叶辉 李汝嘉 +4 位作者 季荣彪 李亚东 孙晓海 陈娇娇 杨建平 《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期381-390,共10页
针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)... 针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)算法对图像特征进行增强,并采用Transformer的自注意力机制,以获得更全面的高层视觉语义信息.通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调,在农业领域的玉米病害上验证了该算法的适用性,实现了更精确的病害检测.实验结果表明,基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.5867%.在参数权重一致,与性能优秀的轻量级Transformer、卷积神经网络(CNN)系列模型对比的实验结果表明,改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3_Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.1877%~4.9881%,且能迅速收敛. 展开更多
关键词 Swin-Tiny Transformer模型 数据增强 迁移学习 玉米病害识别 图像分类
下载PDF
基于改进YOLOv5的草莓病害识别
19
作者 邱畅 田光兆 +2 位作者 赵嘉威 谢尚杰 郑奎 《中国农机化学报》 北大核心 2024年第3期198-204,共7页
为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来... 为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。 展开更多
关键词 草莓 YOLOv5 机器视觉 深度学习 病害识别
下载PDF
基于改进YOLOv3的玉米病害识别方法
20
作者 张继成 黄向党 《中国农机化学报》 北大核心 2024年第7期269-275,共7页
为提高玉米作物病害叶片识别模型的准确性,提出改进YOLOv3的玉米病害识别方法。首先,为获得更深的玉米疾病特征,通过更改浅特征图比例和添加第四个检测层,分别修改YOLOv3网络体系结构为YOLOv3-M1和YOLOv3-M2。然后,采用改进的K-means算... 为提高玉米作物病害叶片识别模型的准确性,提出改进YOLOv3的玉米病害识别方法。首先,为获得更深的玉米疾病特征,通过更改浅特征图比例和添加第四个检测层,分别修改YOLOv3网络体系结构为YOLOv3-M1和YOLOv3-M2。然后,采用改进的K-means算法进行聚类,获得的锚框倾向于数据集的真实边界框。最后,为每个类别添加一个平衡因子,并对不同类别中样本的难度进行加权来修改损失函数,使得模型能够找到边界盒预测与类别预测之间的最佳点,使算法获得最佳检测效果。结果表明,改进的YOLOv3-M1和YOLOv3-M2模型在测试集上的准确率分别高达95.63%和97.59%,相比YOLOv3模型,识别准确率分别提高4.15%和6.28%,识别准确率在玉米数据集上得到大幅度提高。 展开更多
关键词 玉米 深度学习 病害识别 YOLOv3模型 损失函数
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部